比特派bitpie比特派官网|区块链技术应用的意义
比特派bitpie比特派官网|区块链技术应用的意义
BlockCity区块城市-务实元宇宙的先行者
kCity区块城市-务实元宇宙的先行者Please enable JavaScript to continue.区块城市BC众创BC众投城市区县 地域企业 品牌组织 社群明星 名人大V UP主学校 小区等川渝北区中本聪丽江花园洛溪华科大桃江一中圈内人元创道青岛通安坤物流湖南大学元初宇宙第九城市大湾区深圳众行大湾市北航宠爱哥哥瑜伽雄安新区华中大家具协会游艇小镇王氏宗亲东北农大南通大学吉林大学长沙师范DADAD白市AB城市湖大校友重庆衢州丽水舟山温州台州绍兴宁波金华嘉兴湖州杭州昭通玉溪西双版纳文山曲靖普洱怒江临沧丽江红河迪庆德宏楚雄保山大理昆明伊犁吐鲁番塔城克州克拉玛依喀什和田哈密昌吉博尔塔拉巴州阿勒泰阿克苏乌鲁木齐山南日喀则那曲林芝昌都阿里拉萨天津自贡资阳雅安绵阳眉山凉山甘孜德阳达州巴中阿坝宜宾南充内江泸州乐山广元遂宁攀枝花广安成都上海榆林渭南商洛延安咸阳铜川汉中安康宝鸡西安运城阳泉忻州晋中晋城朔州吕梁临汾长治大同太原泰安日照临沂聊城莱芜东营德州滨州淄博枣庄烟台潍坊威海青岛济宁济南菏泽大连玉树黄南海西海南州海东海北果洛西宁中卫吴忠固原石嘴山银川兴安盟锡林郭勒乌兰察布乌海通辽呼伦贝尔赤峰巴彦淖尔阿拉善盟呼和浩特鄂尔多斯包头铁岭盘锦辽阳葫芦岛阜新丹东朝阳本溪鞍山营口锦州抚顺沈阳鹰潭宜春新余上饶萍乡吉安赣州抚州南昌九江景德镇镇江盐城泰州宿迁淮安扬州徐州无锡苏州南通南京连云港常州延边通化松原四平辽源白山白城吉林长春株洲张家界永州益阳湘西湘潭邵阳娄底怀化郴州岳阳衡阳常德长沙孝感咸宁随州十堰荆州荆门黄石恩施鄂州宜昌襄樊黄冈武汉绥化双鸭山七台河黑河鹤岗伊春齐齐哈尔牡丹江佳木斯鸡西大兴安岭大庆哈尔滨驻马店周口许昌信阳新乡商丘三门峡濮阳平顶山南阳漯河洛阳焦作鹤壁安阳郑州开封张家口邢台唐山衡水邯郸沧州秦皇岛廊坊承德保定石家庄三亚海口黔西南黔南黔东南遵义铜仁六盘水毕节安顺贵阳玉林梧州钦州来宾崇左贺州河池桂林贵港防城港北海百色柳州南宁湛江云浮阳江汕尾清远梅州揭阳江门河源珠海中山肇庆深圳韶关汕头茂名惠州广州佛山东莞潮州张掖武威天水庆阳平凉陇南临夏酒泉金昌嘉峪关甘南定西白银兰州漳州三明龙岩厦门泉州莆田宁德南平福州北京宣城铜陵宿州六安黄山淮南淮北毫州阜阳滁州池州巢湖安庆芜湖马鞍山合肥蚌埠兑换领取城市基金专项募捐基金社会公益基金重大活动基金贡献奖励基金居民纾百度安全验证
百度安全验证
网络不给力,请稍后重试
返回首页
问题反馈
区块链的典型应用 - 知乎
区块链的典型应用 - 知乎首发于区块链漫游指南切换模式写文章登录/注册区块链的典型应用tohnee语言和文字可以改变世界科技创新,应用为王。一项新技术能否最终落地普及,有很多影响因素。其中很关键的一点便是能否找到合适的应用场景。以比特币网络为代表的大规模数字货币系统,长时间自治运行,支持了传统金融系统都难以实现的全球范围即时可靠交易。这为区块链技术的应用潜力引发了无限遐想。如果未来基于区块链技术构造的商业价值网络成为现实,所有的交易都将高效完成且无法伪造;所有签署的合同都能按照约定严格执行。这将极大降低整个商业体系运转的成本,同时大大提高社会沟通协作的效率。从这个意义上讲,基于区块链技术构建的未来商业网络,将可能引发继互联网之后又一次巨大的产业变革。目前,金融交易系统已经开始验证和使用区块链系统。包括征信管理、跨国交易、跨组织合作、资源共享和物联网等诸多领域,也涌现出大量有趣的应用案例。本章将通过剖析这些典型的应用场景,展现区块链技术为不同行业带来的创新潜力。应用场景概览区块链技术已经从单纯的技术探讨走向了应用落地的阶段。国内外已经出现大量与之相关的企业和团队。有些企业已经结合自身业务摸索出了颇具特色的应用场景,更多的企业还处于不断探索和验证的阶段。实际上,要找到合适的应用场景,还是要从区块链技术自身的特性出发进行分析。区块链在不引入第三方中介机构的前提下,可以提供去中心化、不可篡改、安全可靠等特性保证。因此,所有直接或间接依赖于第三方担保机构的活动,均可能从区块链技术中获益。区块链自身维护着一个按时间顺序持续增长、不可篡改的数据记录,当现实或数字世界中的资产可以生成数字摘要时,区块链便成为确权类应用的完美载体,提供包含所属权和时间戳的数字证据。可编程的智能合约使得在区块链上登记的资产可以获得在现实世界中难以提供的流动性,并能够保证合约规则的透明和不可篡改。这就为区块链上诞生更多创新的经济活动提供了土壤,为社会资源价值提供更加高效且安全的流动渠道。此外,还需要思考区块链解决方案的合理边界。面向大众消费者的区块链应用需要做到公开、透明、可审计,既可以部署在无边界的公有链,也可以部署在应用生态内多中心节点共同维护的区块链;面向企业内部或多个企业间的商业区块链场景,则可将区块链的维护节点和可见性限制在联盟内部,并用智能合约重点解决联盟成员间信任或信息不对等问题,以提高经济活动效率。未来几年内,可能深入应用区块链技术的场景将包括:金融服务:区块链带来的潜在优势包括降低交易成本、减少跨组织交易风险等。该领域的区块链应用目前最受关注,全球不少银行和金融交易机构都是主力推动者。部分投资机构也在应用区块链技术降低管理成本和管控风险。从另一方面,要注意可能引发的问题和风险。例如,DAO(Decentralized Autonomous Organization 是史上最大的一次众筹活动,基于区块链技术确保资金的管理和投放)这样的众筹实验,提醒应用者在业务和运营层面都要谨慎处理。征信和权属管理:征信和权属的数字化管理是大型社交平台和保险公司都梦寐以求的。目前该领域的主要技术问题包括缺乏足够的数据和分析能力;缺乏可靠的平台支持以及有效的数据整合管理等。区块链被认为可以促进数据交易和流动,提供安全可靠的支持。征信行业的门槛比较高,需要多方资源共同推动。资源共享:以 Airbnb 为代表的分享经济公司将欢迎去中心化应用,可以降低管理成本。该领域主题相对集中,设计空间大,受到大量的投资关注。贸易管理:区块链技术可以帮助自动化国际贸易和物流供应链领域中繁琐的手续和流程。基于区块链设计的贸易管理方案会为参与的多方企业带来极大的便利。另外,贸易中销售和法律合同的数字化、货物监控与检测、实时支付等方向都可能成为创业公司的突破口。物联网:物联网也是很适合应用区块链技术的一个领域,预计未来几年内会有大量应用出现,特别是租赁、物流等特定场景,都是很合适结合区块链技术的场景。但目前阶段,物联网自身的技术局限将造成短期内不会出现大规模应用。这些行业各有不同的特点,但或多或少都需要第三方担保机构的参与,因此都可能从区块链技术中获得益处。当然,对于商业系统来说,技术支持只是一种手段,根本上需要满足业务需求。区块链作为一个底层的平台技术,要利用好它,需要根据行业特性进行综合考量设计,对其上的业务系统和商业体系提供合理的支持。有理由相信,区块链技术落地的案例会越来越多。这也会进一步促进新技术在传统行业中的应用,带来更多的创新业务和场景。金融服务金融活动影响人类社会的方方面面,目前涉及货币、证券、保险、抵押、捐赠等诸多行业。通过金融交易,可以优化社会资源运转效率,实现资源使用的最优化。可以说,人类社会的文明发展,离不开金融交易。交易本质上交换的是价值的所属权。为了完成一些贵重资产(例如房产、车辆)的交易,往往需要依靠中介和担保机构,不仅过程繁琐,而且手续费用高昂。之所以需要第三方机构介入,是因为交易双方无法充分信任对方提供的信息。一方面,证明所属权只能通过相关机构开具的证明材料,存在造假风险;另一方面,交换过程手续繁琐,存在篡改和错误的风险。为了确保金融交易的可靠完成,出现了第三方担保机构这样的角色。它们通过提供信任保障服务,提高了社会整体经济活动的效率。但现有的第三方中介机制往往存在成本高、时间周期长、流程复杂、容易出错等缺陷。因此,金融领域长期存在提高交易效率的迫切需求。区块链技术可以为金融服务提供有效、可信的所属权证明,以及相当可靠的合约确保机制。数字货币银行从角色上,一般分为中央银行(央行)和普通银行。中央银行的两大职能是“促进宏观经济稳定”和“维护金融稳定”(《金融的本质》,本·伯南克(Ben Bernanke),中信出版社,2014 年出版),主要手段就是管理各种证券和利率。央行的存在,为整个社会的金融体系提供了最终的信用担保。普通银行业则往往基于央行的信用,作为中介和担保方,来协助完成多方的金融交易。银行活动主要包括发行货币、完成存贷款等功能。为了保障货币价值稳定,发行机构必须能时时刻刻保证交易的可靠性和确定性。为了做到这一点,传统的金融系统设计了复杂的安全流程,采用了极为复杂的软件和硬件方案,其建设和维护成本都十分昂贵。即便如此,这些系统仍然存在诸多缺陷,每年都会出现安全攻击和金融欺诈事件。此外,交易过程还常常需要经由额外的支付企业进行处理。这些实际上都增大了交易成本。以区块链技术为基础的数字货币的出现,对货币的研究和实践都提出了新的启发,被认为有可能促使这一领域发生革命性变化。除了众所周知的比特币等数字货币实验之外,还有诸多金融机构进行了有意义的尝试,尤其是各国进行的法定数字货币研究,具备越来越多的实践意义。中国人民银行投入区块链研究2016 年,中国人民银行对外发布消息,称深入研究了数字货币涉及的相关技术,包括区块链技术、移动支付、可信可控云计算、密码算法、安全芯片等,被认为积极关注区块链技术的发展。实际上,央行对于区块链技术的研究很早便已开展。2014 年,央行成立发行数字货币的专门研究小组对基于区块链的数字货币进行研究,次年形成研究报告。2016 年 1 月 20 日,央行专门组织了“数字货币研讨会”,邀请了业内的区块链技术专家就数字货币发行的总体框架、演进、以及国家加密货币等话题进行了研讨。会后,发布对我国银行业数字货币的战略性发展思路,提出要早日发行数字货币,并利用数字货币相关技术来打击金融犯罪活动。2016 年 12 月,央行成立数字货币研究所。初步公开设计为“由央行主导,在保持实物现金发行的同时发行以加密算法为基础的数字货币,M0(流通中的现金)的一部分由数字货币构成。为充分保障数字货币的安全性,发行者可采用安全芯片为载体来保护密钥和算法运算过程的安全”。2018 年 7 月,央行数字货币研究所在联合国国际电信联盟(ITU)会议上发表了关于法定数字货币双层架构的主题演讲。从目前看,央行很可能采用联盟形式,由中央银行与国家系统重要性金融机构来共同维护分布式账本系统,直接发行和管理数字货币,作为流通现金的一种形式。一旦实施,将对现有的支付清算体系,特别商业银行产生重大影响。数字货币由于其电子属性,在发行和防伪方面成本都优于已有的纸质货币。另外,相对信用卡等支付手段,数字现金很难被盗用,大大降低了管理成本。同时也要注意到由银行发行数字货币在匿名程度、点对点直接支付、利息计算等方面仍有待商榷。加拿大银行提出新的数字货币2016 年 6 月,加拿大央行公开正在开发基于区块链技术的数字版加拿大元(名称为 CAD 币),以允许用户使用加元来兑换该数字货币。经过验证的对手方将会处理货币交易;另外,如果需要,银行将保留销毁 CAD 币的权利。发行 CAD 币是更大的一个探索型科技项目 Jasper 的一部分。除了加拿大央行外,据悉,蒙特利尔银行、加拿大帝国商业银行、加拿大皇家银行、加拿大丰业银行、多伦多道明银行等多家机构也都参与了该项目。Jasper 项目的目标是希望评估分布式账本技术对金融基础设施的变革潜力。通过在大额支付系统的概念验证,认为在基于分布式账本的金融基础设施中应重视监管能力;另外,虽然分布式支付系统并不能降低运营风险,但在与更广泛的金融基础设施进行合作互动时,有助于实现规模效益,实现全行业的效率提升。金融时报:Canada experiments with digital dollar on blockchain,2016-06-16。英国央行实现 RSCoin英国央行(英格兰银行)在数字货币方面进展十分突出,已经实现了基于分布式账本平台的数字货币原型系统——RSCoin。旨在强化本国经济及国际贸易。RSCoin目标是提供一个由中央银行控制的、可扩展的数字货币,采用了中央银行-商业银行双层链架构、改进版的两阶段提交(Two Phase Commitment),以及多链之间的交叉验证机制。该货币由中央银行发行,交易机构维护底层账本,并定期提交给中央银行。因为该系统主要是央行和下属银行之间使用,通过提前建立一定的信任基础和采用分片机制,可以提供较好的处理性能(单记账机构可以达到2000笔每秒)。RSCoin理论上可以作为面向全社会的支付手段,但技术和监管细节上需要进一步完善。英国央行对 RSCoin 进行了推广,希望能尽快普及该数字货币,以带来节约经济成本、促进经济发展的效果。同时,英国央行认为,数字货币相对传统货币更适合国际贸易等场景,同时理论上具备成为各国货币兑换媒介的潜力。支付清结算业务支付和清结算是现代金融行业十分重要的操作。随着信息技术的发展,支付清结算业务系统的效率也在不断提高。但当资金的清算涉及到多个交易主体和多个认证环节时效率仍然不高,特别涉及到跨境多方交易等场景时。区块链技术在处理交易时即确保了交易记录的不可篡改性和对交易结果的有效确认,有望节约清结算的人力和时间成本,降低机构间的争议,提高自动化处理效率。SWIFT 完成跨银行的分布式账本验证2018 年 3 月,环球同业银行金融电讯协会(SWIFT)完成了涉及到 34 家银行的分布式账本验证。验证重点关注基于超级账本项目的分布式账本技术能否满足监管、安全、隐私性等方面的需求。验证表明分布式账本技术可以满足自动化的资产管理需求,为未来多银行间合作提供重要支撑。SWIFT 研发中心负责人 Damien Vanderveken 称:“验证进行得相当好,证实了分布式账本技术的巨大进展,尤其是超级账本 Fabric 项目 1.0(The PoC went extremely well, proving the fantastic progress that has been made with DLT and the Hyperledger Fabric 1.0 in particular)”。IBM 构建全球支付网络TODO: https://www.coindesk.com/ibm-signs-6-banks-to-issue-stablecoins-and-use-stellars-xlm-cryptocurrency2018 年 8 月,IBM 推出了基于区块链的全球支付解决方案 —— WorldWire,该网络使用 Stellar 协议,可以实现在数秒钟之内完成跨境支付的清结算。IBM 认为该新型支付解决方案可以很好的接入已有的支付系统,并且有能力支持包括法币、数字资产、稳定币等资产的支付,所有交易存储在账本上,可以持久保留。目前,该支付网络上已经实现了与美元挂钩的稳定币,IBM 正在与多家国际银行(巴西布拉德斯科银行、釜山银行等)合作,计划增加更多类型的稳定币支持。巴克莱银行用区块链进行国际贸易结算在国际贸易活动中,买卖双方可能互不信任。因此需要银行作为买卖双方的保证人,代为收款交单,并以银行信用代替商业信用。区块链可以为信用证交易参与方提供共同账本,允许银行和其它参与方拥有经过确认的共同交易记录并据此履约,从而降低风险和成本。2016 年 9 月,英国巴克莱银行用区块链技术完成了一笔国际贸易的结算,贸易金额 10 万美元,出口商品是爱尔兰农场出产的芝士和黄油,进口商是位于离岸群岛塞舌尔的一家贸易商。结算用时不到 4 小时,而传统采用信用证方式做此类结算需要 7 到 10 天。在这笔贸易背后,区块链提供了记账和交易处理系统,替代了传统信用证结算过程中占用大量人力和时间的审单、制单、电报或邮寄等流程。中国邮储银行在核心业务系统中使用区块链2016 年 10 月,中国邮储银行宣布携手 IBM 推出基于区块链技术的资产托管系统,是中国银行业首次将区块链技术成功应用于核心业务系统。新的业务系统免去了重复的信用校验过程,将原有业务环节缩短了约 60-80% 的时间,提高了信用交易的效率。多家银行合作推出信用证区块链2017 年 7 月,民生银行、中信银行、中国银行和苏宁银行基于超级账本技术推出了首家基于区块链的信用证业务平台。该业务上线当日交易额即达到了 1 亿人民币,目前,每天交易额在十亿量级。该系统与传统的信用证结算不同,没有使用 SWIFT 代码,而是使用独创的信用证交换系统。基于区块链技术,不仅大幅降低了成本,还提高了交易效率和安全性。当然,如何与已有的基于 SWIFT 系统的国际业务打通,将是该平台面临的挑战之一。蚂蚁金服推出区块链跨境汇款服务2018 年 6 月 25 日,蚂蚁金服宣布其基于区块链的电子钱包跨境汇款服务在香港上线。该系统实现香港金管局、新加坡金管局、港版支付宝(Alipay HK)、渣打银行、菲律宾钱包 GCash 间的跨机构协同,Alipay HK 用户可基于区块链技术向 Gcash 汇款,汇款时间为 3~6 秒。摩根大通用区块链进行机构间实时支付2019 年 2 月,摩根大通宣布推出基于区块链的数字货币”JPM Coin“,以实现客户之间的实时结算。据悉,每个 JPM Coin 暂时等价 1 美元。摩根大通的机构客户向指定账户存款后可获得等值的 JPM Coin。通过区块链,机构之间可以以 JPM Coin 为价值载体进行实时交易。持有 JPM Coin 的机构客户可在摩根大通实时赎回美元。这意味着这家美国最大的金融服务机构已经开始主动拥抱区块链科技带来的新变化。目前,JPM Coin 仅限大型机构客户使用,并将持续与监管部门合作。其它新型支付业务基于区块链技术,出现了大量的创新支付企业,这些支付企业展示了利用区块链技术带来的巨大商业优势。Abra:区块链数字钱包,以近乎实时的速度进行跨境支付,无需银行账户,实现不同币种的兑换,融资超过千万美金。Bitfinex:组建 Tether Limited 公司来发行稳定币 USDT,作为最流行的稳定币,市值超过 10 亿美金。稳定币通过绑定代币到法定货币以保障价格的稳定性。如果抵押过程公开并支持审计,则可以降低用户因为代币价格波动带来的风险。Bitwage:基于比特币区块链的跨境工资支付平台,可以实现每小时的工资支付,方便跨国企业进行外包工资管理。BitPOS:澳大利亚创业企业,提供基于比特币的低成本的快捷线上支付,适用于餐饮行业。Circle:由区块链充当支付网络,允许用户进行跨币种、跨境的快速汇款。Circle 获得了来自 IDG、百度的超过 6000 万美金的 D 轮投资。2018 年 9 月,Circle 推出了稳定币 USDC,上市 2 个月,USDC 的市值已达到 2 亿美元。Ripple:实现跨境的多币种、低成本、实时交易,引入了网关概念(类似银行),结构偏中心化,可以与银行等金融机构合作完成跨境支付。证券交易后处理证券交易包括交易执行环节和交易后处理环节。交易环节本身相对简单,主要是由交易系统(高性能实时处理系统)完成电子数据库中内容的变更。中心化的验证系统往往极为复杂和昂贵。交易指令执行后的清算(计算交易方的财务义务)和结算(最终资产的转移)环节也十分复杂,需要大量的人力成本和时间成本,并且容易出错。目前来看,基于区块链的处理系统还难以实现海量交易系统所需要的性能(典型性能为每秒数万笔以上成交,日处理能力超过五千万笔委托、三千万笔成交)。但在交易的审核和清算环节,区块链技术存在诸多的优势,可以极大降低处理时间,同时减少人工的参与。2016 年 2 月,咨询公司 Oliver Wyman 在给 SWIFT(环球同业银行金融电讯协会)提供的研究报告《Blockchain in Capital Markets -- The Prize and the Journey》中预计,全球清算行为成本约 50~100 亿美元,结算成本、托管成本和担保物管理成本 400~450 亿美元(390 亿美元为托管链的市场主体成本),而交易后流程数据及分析花费 200~250 亿美元。2016 年 4 月,欧洲央行在报告《Distributed ledger technologies in securities post-trading》中指出,区块链作为分布式账本技术,可以很好地节约对账的成本,同时简化交易过程。相对原先的交易过程,可以近乎实时的变更证券的所有权。2015 年 10 月,美国纳斯达克(Nasdaq)证券交易所推出区块链平台 Nasdaq Linq,实现主要面向一级市场的股票交易流程。通过该平台进行股票发行的发行者将享有“数字化”的所有权。其它证券相关案例还包括:BitShare 推出基于区块链的证券发行平台,号称每秒达到 10 万笔交易。DAH 为金融市场交易提供基于区块链的交易系统。获得澳洲证交所项目。Symbiont 帮助金融企业创建存储于区块链的智能债券,当条件符合时,清算立即执行。http://Overstock.com 推出基于区块链的私有和公开股权交易“T0”平台,提出“交易即结算”(The trade is the settlement)的理念,主要目标是建立证券交易实时清算结算的全新系统。高盛为一种叫做“SETLcoin”的数字货币申请专利,用于为股票和债券等资产交易提供“近乎立即执行和结算”的服务。供应链金融供应链金融是一种重要的融资模式。传统上一般由银行基于真实贸易,以核心企业信用为担保来连接上下游企业。供应链金融可为供应链上的企业提供自偿性融资,有助于缓解小微企业融资难的问题,增强供应链活力。该领域长期以来一直存在众多问题:弱势成员企业供货应收账款周期长,面临较大的资金压力,但融资难。银行从风控角度考虑,愿意为核心企业上游直接供应商提供保理服务,为直接下游经销商提供融资,但不愿意给其它企业(通常往往规模较小,缺乏足够抵押)授信。而核心企业和直接上下游企业往往不愿意承担风险,导致整个链条缺乏活力;供应链上下游企业关系密切,风险往往息息相关。来自上下游的不确定性(特别是核心企业)增大了整个供应链企业的整体风险。由于供应链往往涉及到数十家甚至数百家企业,供货生命周期很长,涉及生产制造、运输、担保等多种环节,信息隐瞒或票据篡改造假的情况很难避免。银行要获取多家企业真实贸易信息的难度很大,造成实际融资成本高居不下。作为主要融资工具的票据(包括商业汇票、银行汇票)使用场景局限,票据实际可兑换情况和价值依赖背书企业的信誉和实力,实际操作难度大。供应链金融的业务特点,使得其十分契合区块链的技术特点。区块链上数据都带有签名和时间戳,提供高度可靠的历史记录,可以有效降低银行对信息可靠性的疑虑,实现核心企业信用在链上的分割与流转。最终提高整个供应链的金融效率。目前,供应链金融区块链平台主要以联盟链的形式打造,具有如下业务优势:时间戳设计保证债权拆分、流转后信用不变,整体流程完整可追溯;分布式数据存储打破信息不对称,防止信息篡改和造假;智能合约自动执行,减少人工干预,提高资金流通效率。为使供应链金融迅速且有序发展,我国也推出一系列指导意见。如 2017 年七部门联合印发的《小微企业应收账款融资专项行动工作方案(2017-2019年)》提到:“推动供应链核心企业支持小微企业应收账款融资,引导金融机构和其他融资服务机构扩大应收账款融资业务规模”;此外,2017 年国务院办公厅《关于积极推进供应链创新与应用的指导意见》也指出:“积极稳妥发展供应链金融”。这些在政策层面上的指导建议,促进了国内供应链金融的发展速度与态势。2017 年 3 月,深圳区块链金融服务有限公司基于区块链技术与全国范围内多家银行建立联盟,共同推出“票链”产品,通过创新模式为持有银行承兑汇票的中小微企业提供高效便捷的票据融资服务。“票链”产品发布后,在江西地区率先进行试点运营,上线首月交易规模已近亿元人民币。其中绝大部分交易标的为数十万元的小额银行承兑汇票,切实解决了中小微企业客户长期面对的融资难、融资贵难题。2017 年 4 月,易见科技供应链金融平台上线运营,2018 年 9 月发布 2.0 版本;自上线以来,已帮助近200家企业及金融机构完成了超过 40 亿元的供应链金融业务,线上融资合同近 500 份,涉及医药、化工、制造、大宗、物流、航空和地产等多个行业。易见区块平台基于超级账本技术,产品体系包括供应链贸易系统、供应链融资平台和供应链资产证券化平台。2018 年 4 月 13 日,平安集团金融壹帐通在深圳推出国内首个连接金融机构和中小企业的“壹企银中小企业智能金融服务平台”,将助力银行等金融机构解决中小企业融资难题。壹企银广泛应用金融科技最新技术,全程实现银行等金融机构信贷业务流程智能化,点对点实时打通中小企业信息“死结”,从而实现中小企业融资快捷、高效和低成本、低风险。“Chained Finance”区块链金融平台是由国内互联网金融公司点融和富士康旗下金融平台富金通共同推出的供应链金融平台,在业内首次借助区块链技术破解供应链金融和中小企业融资难题。另外,类似“一带一路”这样创新的投资建设模式,会碰到来自地域、货币、物流等各方面的挑战。现在已经有一些部门对区块链技术进行探索应用。区块链技术可以让原先无法交易的双方(例如,不存在多方都认可的国际货币储备的情况下)顺利完成交易,并且降低贸易风险、减少流程管控的成本。税收服务传统的税收服务体系在税务信用等级、税收遵从、税源监控等领域存在数据孤岛、信息壁垒等难题,这也导致税务管理中存在大量增值税发票虚开虚抵、农产品优惠政策骗税、出口骗税、稽查取证等争议。基于区块链的分布式账本可记录跨地域、跨企业的电子票信息,打破数据壁垒。例如,通过融入密码学算法及数据可信上链服务,在保护纳税人数据的同时,实现以税票为中心的发生过程监控。将纳税规则写入智能合约,系统根据往来业务和数据实现交易与开票数据的自动匹配、核对、缴纳,避免虚开错开,实现税源的全面监控。而区块链透明、弱中心化的特点可为建立税务、工商、海关、银行等部门横向信息的全面掌握分析机制奠定基础,提升征税效率与准确性。2018 年 8 月 10 日,由深圳市税务局主导、腾讯提供底层技术支持,深圳国贸旋转餐厅开出了国内"首张"区块链电子发票。通过在微信中整合支付、开票、报销等功能,该成果致力于实现“交易即开票,开票即报销”。以区块链作为底层支撑技术,接入税务局、微信支付、财务软件商、商家等相关方,可确保发票唯一,并且领票、开票、流转、入账、报销等流程信息完整可追溯,解决传统系统“一票多报、虚报虚抵”等难题,降低经营成本和税收风险。众筹管理区块链自身带来的多方信任合作机制,有望提高众筹的效率和安全性。该领域的尝试目前主要是“首次代币发行(Initial Coin Offering,ICO)”形式。ICO 设计思想十分简单。项目发起方通过售卖项目早期的数字资产(代币)向外界融资,投资者可以直接以比特币等形式参与。当项目上线后,如果能得以健康成长,项目代币价格上涨,投资者可以获得回报,并且可以选择任何时候卖出这些代币而无条件退出。最早的 ICO 出现在 2013 年 6 月,万事达币(MSC)在 Bitcointalk 论坛上众筹 5000 个比特币。虽然,很可惜该项目后来并没有成功,但开启了 ICO 的浪潮。2014 年,比较出名的如比特股 Bitshares 和以太坊 Ethereum 先后发起 ICO,并且随着平台自身的发展,投资者获取了大量的回报。这些早期项目支持了区块链领域的初创企业,同时探索了新的众筹模式。2016 年 4 月 30 日上线的 DAO(Decentralized Autonomous Organization)项目,试图打造基于以太坊的众筹平台,更是一度创下历史最高的融资记录,数额超过 1.6 亿美金。该项目暴露出这种创新形式的组织者们在应对安全风险时候缺乏足够的应对经验。6 月 12 日,有技术人员报告合约执行过程中存在软件漏洞,但很遗憾并未得到组织的重视和及时修复。四天后,黑客利用漏洞转移了 360 万枚以太币,当时价值超过 5000 万美金。虽然最后采用了一些技术手段来挽回经济损失,但该事件毫无疑问给以太坊平台带来了负面影响,也给 ICO 这种新模式的流程管理敲响了警钟。2017 年开始,传统风投基金也开始尝试用 ICO 来募集资金。Blockchain Capital 在 2017 年发行的一支基金创新地采用了传统方式加 ICO 的混合方式进行募资,其中传统部分规模 4000 万美元,ICO 部分规模 1000 万美元。4 月 10 日,ICO 部分 1000 万美元的募集目标在启动后六小时内全部完成。整个 2017 年全球超过 1000 个 ICO 项目,总募资额超过 40 亿美金。Telegram 在 2018 年初通过两轮 ICO 共募集资金 17 亿美金,值得注意的是,在第二轮时已经明确限制最低投资门槛为 100 万美元。由于市场过于火爆,投资者投机心理加重,同时出现了大量欺诈性的项目。这些项目的白皮书粗制滥造,有的项目甚至连白皮书都没有,被戏称为“空气项目”。2017 年下半年开始,大量不成熟项目因为无法完成预设目标而破灭,这被认为是第一次 ICO 泡沫的结束,同时市场在泡沫后变得更加成熟和理性。同期,各国开始加强监管,要么将其纳入已有监管体系,要么暂时禁止 ICO 活动。2017 年 8 月 28 日,美国证监会发布关于谨防 ICO 骗局的警告,后将 ICO 纳入证券监管;此外,澳大利亚、加拿大、印度、菲律宾以及欧洲主要国家也将 ICO 纳入监管。同年 9 月 4 日,中国人民银行等 7 部门发文,称 ICO 为“未经批准非法公开融资的行为”,各类代币发行融资活动应立即停止。这些措施提高了项目发行的门槛,客观上促进了整个生态系统的进化。全球范围内 ICO 项目发行的频率明显下降,但优质项目比例明显提高。客观来看,作为一种创新的模式,ICO 众筹方式相对 IPO 更加灵活,适合早期中小资金额的创业项目。但目前 ICO 项目仍属于法律监管的灰色地带,往往存在如下问题:缺少法律支持和监管机制。作为一种新型融资行为,由于缺乏相关法规,监管流程很难执行。出现问题后投资者无法得到合理赔偿;项目的评估难度很大。进行 ICO 的项目往往是科技和创新含量较高的产品,无论是审查机构还是普通投资者都很难进行准确评估;我国《证券法》第二章第 10 条明确规定:“公开发行证券,必须符合法律、行政法规规定的条件,并依法报经国务院证券监督管理机构或者国务院授权的部门核准;未经依法核准,任何单位和个人不得公开发行证券”。这可以保障投资者的长期权益,有利于建设健康的交易环境。因此,为了解决 ICO 的现有缺陷,应当参考 IPO 等证券管理办法制定监管框架。具体可从三个方面进行完善:从项目方角度需要通过行业共识建立规范的准入机制。如要求必要信息的公开和接受第三方的监督审查,同时设定融资额度限制。通过这些机制可以避免欺诈,保护市场投资者;从投资者角度在一定时间内应当提高入场门槛。如募集资金超过一定额度的项目只能接受来自专业投资机构的投资。同时加强投资者教育和风险告知;最后,法律界需要和科技界开展合作,尽早主动出台相关监管法规,将这一新型募资方式纳入到正式监管之下,并建立完整的市场机制。征信管理征信管理是一个巨大的潜在市场,据称超过千亿规模(可参考美国富国银行报告和平安证券报告),也是目前大数据应用领域最有前途的方向之一。目前征信相关的大量有效数据集中在少数机构手中。由于这些数据太过敏感,并且具备极高的商业价值,往往会被严密保护起来,形成很高的行业门槛。虽然现在大量的互联网企业(包括各类社交网站)尝试从各种维度获取了海量的用户信息,但从征信角度看,这些数据仍然存在若干问题。这些问题主要包括:数据量不足:数据量越大,能获得的价值自然越高,过少的数据量无法产生有效价值;相关度较差:最核心的数据也往往是最敏感的。在隐私高度敏感的今天,用户都不希望暴露过多数据给第三方,因此企业获取到数据中有效成分往往很少;时效性不足:企业可以从明面上获取到的用户数据往往是过时的,甚至存在虚假信息,对相关分析的可信度造成严重干扰。区块链天然存在着无法篡改、不可抵赖的特性。同时,区块链平台将可能提供前所未有规模的相关性极高的数据,这些数据可以在时空中准确定位,并严格关联到用户。因此,基于区块链提供数据进行征信管理,将大大提高信用评估的准确率,同时降低评估成本。另外,跟传统依靠人工的审核过程不同,区块链中交易处理完全遵循约定自动化执行。基于区块链的信用机制将天然具备稳定性和中立性。目前,包括 IDG、腾讯、安永、普华永道等都已投资或进入基于区块链的征信管理领域,特别是跟保险和互助经济相关的应用场景。保险行业保险行业区块链倡议组织(Blockchain Insurance Industry Initiative,B3i)诞生于 2016 年下半年,面向保险行业,探索基于分布式账本的新型技术。分布式账本带来的可信能力,将有望给保险行业带来新的变革。目前,B3i 已经包括超过 40 家会员企业,包括美国国际集团、友邦保险、安联保险、瑞士再保险等保险行业巨头。权属管理与溯源区块链技术可以用于产权、版权等所有权的管理和追踪。其中包括汽车、房屋、艺术品等各种贵重物品的交易等,也包括数字出版物,以及可以标记的数字资源。目前权属管理领域存在的几个难题是:物品所有权的确认和管理;交易的安全性和可靠性保障;必要的隐私保护机制。以房屋交易为例。买卖双方往往需要依托中介机构来确保交易的进行,并通过纸质的材料证明房屋所有权。但实际上,很多时候中介机构也无法确保交易的正常进行。而利用区块链技术,物品的所有权是写在数字链上的,谁都无法修改。并且一旦出现合同中约定情况,区块链技术将确保合同能得到准确执行。这能有效减少传统情况下纠纷仲裁环节的人工干预和执行成本。例如,公正通(Factom)尝试使用区块链技术来革新商业社会和政府部门的数据管理和数据记录方式。包括审计系统、医疗信息记录、供应链管理、投票系统、财产契据、法律应用、金融系统等。它将待确权数据的指纹存放到基于区块链的分布式账本中,可以提供资产所有权的追踪服务。区块链账本共享、信息可追踪溯源且不可篡改的特性同样可用于打击造假和防范欺诈。Everledger 自 2016 年起就研究基于区块链技术实现贵重资产检测系统,将钻石或者艺术品等的数字指纹信息(包括钻石超过40个数据点的颜色、清晰度、切割和重量等信息)记录在区块链上。并于 2017 年宣布与 IBM 合作,实现生产商、加工商、运送方、零售商等多方之间的可信高效协作。类似地,针对食品造假这一难题,IBM、沃尔玛、清华大学于 2016 年底共同宣布将在食品安全领域展开合作,将用区块链技术搭建透明可追溯的跨境食品供应链。这一全新的供应链将改善食品的溯源和物流环节,打造更为安全的全球食品市场。其他项目在人力资源和教育领域,MIT 研究员朱莉安娜·纳扎雷(Juliana Nazaré)和学术创新部主管菲利普·施密特(Philipp Schmidt)发表了文章《MIT Media Lab Uses the Bitcoin Blockchain for Digital Certificates》,介绍基于区块链的学历认证系统。基于该系统,用人单位可以确认求职者的学历信息是真实可靠的。2018 年 2 月,麻省理工学院向应届毕业生颁发了首批基于区块链的数字学位证书。此外,还包括一些其他相关的应用项目:Chronicled:基于区块链的球鞋鉴定方案,为正品球鞋添加电子标签,记录在区块链上。Mediachain:通过 metadata 协议,将内容创造者与作品唯一对应。Mycelia:区块链产权保护项目,为音乐人实现音乐的自由交易。Tierion: 将用户数据锚定在比特币或以太坊区块链上,并生成“区块链收据”。Ziggurat:基于区块链提供文字、图片、音视频版权资产的登记和管理服务。资源共享当前,以 Uber、Airbnb 为代表的共享经济模式正在多个垂直领域冲击传统行业。这一模式鼓励人们通过互联网的方式共享闲置资源。资源共享目前面临的问题主要包括:共享过程成本过高;用户行为评价难;共享服务管理难。区块链技术为解决上述问题提供了更多可能。相比于依赖于中间方的资源共享模式,基于区块链的模式有潜力更直接的连接资源的供给方和需求方,其透明、不可篡改的特性有助于减小摩擦。有人认为区块链技术会成为新一代共享经济的基石。笔者认为,区块链在资源共享领域是否存在价值,还要看能否比传统的专业供应者或中间方形式实现更高的效率和更低的成本,同时不能损害用户体验。短租共享大量提供短租服务的公司已经开始尝试用区块链来解决共享中的难题。高盛在报告《Blockchain: Putting Theory into Practice》中宣称:Airbnb 等 P2P 住宿平台已经开始通过利用私人住所打造公开市场来变革住宿行业,但是这种服务的接受程度可能会因人们对人身安全以及财产损失的担忧而受到限制。而如果通过引入安全且无法篡改的数字化资质和信用管理系统,我们认为区块链就能有助于提升 P2P 住宿的接受度。该报告还指出,可能采用区块链技术的企业包括 Airbnb、HomeAway 以及 OneFineStay 等,市场规模为 30~90 亿美元。社区能源共享在纽约布鲁克林的一个街区,已有项目尝试将家庭太阳能发的电通过社区的电力网络直接进行买卖。具体的交易不再经过电网公司,而是通过区块链执行。与之类似,ConsenSys 和微电网开发商 LO3 提出共建光伏发电交易网络,实现点对点的能源交易。这些方案的主要难题包括:太阳能电池管理;社区电网构建;电力储备系统搭建;低成本交易系统支持。现在已经有大量创业团队在解决这些问题,特别是硬件部分已经有了不少解决方案。而通过区块链技术打造的平台可以解决最后一个问题,即低成本地实现社区内的可靠交易系统。电商平台传统情况下,电商平台起到了中介的作用。一旦买卖双方发生纠纷,电商平台会作为第三方机构进行仲裁。这种模式存在着周期长、缺乏公证、成本高等缺点。OpenBazaar 试图在无中介的情形下,实现安全电商交易。具体地,OpenBazaar 提供的分布式电商平台,通过多方签名机制和信誉评分机制,让众多参与者合作进行评估,实现零成本解决纠纷问题。大数据共享大数据时代里,价值来自于对数据的挖掘,数据维度越多,体积越大,潜在价值也就越高。一直以来,比较让人头疼的问题是如何评估数据的价值,如何利用数据进行交换和交易,以及如何避免宝贵的数据在未经许可的情况下泄露出去。区块链技术为解决这些问题提供了潜在的可能。利用共同记录的共享账本,数据在多方之间的流动将得到实时的追踪和管理。通过对敏感信息的脱敏处理和访问权限的设定,区块链可以对大数据的共享授权进行精细化管控,规范和促进大数据的交易与流通。减小共享风险传统的资源共享平台在遇到经济纠纷时会充当调解和仲裁者的角色。对于区块链共享平台,目前还存在线下复杂交易难以数字化等问题。除了引入信誉评分、多方评估等机制,也有方案提出引入保险机制来对冲风险。2016 年 7 月,德勤、Stratumn 和 LemonWay 共同推出一个为共享经济场景设计的“微保险”概念平台,称为 LenderBot。针对共享经济活动中临时交换资产可能产生的风险,LenderBot 允许用户在区块链上注册定制的微保险,并为共享的资产(如相机、手机、电脑)投保。区块链在其中扮演了可信第三方和条款执行者的角色。物流与供应链物流与供应链行业被认为是区块链一个很有前景的应用方向。Gartner 一项调查显示,接近 60% 的物流相关企业计划考虑使用分布式账本技术。该行业往往涉及到诸多实体,包括物流、资金流、信息流等,这些实体之间存在大量复杂的协作和沟通。传统模式下,不同实体各自保存各自的供应链信息,严重缺乏透明度,造成了较高的时间成本和金钱成本,而且一旦出现问题(冒领、货物假冒等),难以追查和处理。通过区块链,各方可以获得一个透明可靠的统一信息平台,可以实时查看状态,降低物流成本,追溯物品的生产和运送全过程,从而提高供应链管理的效率。当发生纠纷时,举证和追查也变得更加清晰和容易。例如,运送方通过扫描二维码来证明货物到达指定区域,并自动收取提前约定的费用;冷链运输过程中通过温度传感器实时检测货物的温度信息并记录在链等。来自美国加州的 Skuchain 公司创建基于区块链的新型供应链解决方案,实现商品流与资金流的同步,同时缓解假货问题。马士基推出基于区块链的跨境供应链解决方案2017 年 3 月,马士基和 IBM 宣布,计划与由货运公司、货运代理商、海运承运商、港口和海关当局构成的物流网络合作,构建一个新型全球贸易数字化解决方案 TradeLens。该方案利用区块链技术在各方之间实现信息透明性,降低贸易成本和复杂性,旨在帮助企业减少欺诈和错误,缩短产品在运输和海运过程中所花的时间,改善库存管理,最终减少浪费并降低成本。马士基在 2014 年发现,仅仅是将冷冻货物从东非运到欧洲,就需要经过近 30 个人员和组织进行超过 200 次的沟通和交流,大量文书工作可以替换为无法篡改的数字记录,类似问题都有望借助区块链进行解决。基于区块链的供应链方案,预计每年可为全球航运业节省数十亿美元。国际物流区块链联盟2017 年 8 月,国际物流区块链联盟(Blockchain In Transport Alliance,BiTA)正式成立。该联盟目标为利用分布式账本技术来提高物流和货运效率,并探索新的行业标准。目前,联盟已经发展为超过 25 个国家,500 多家会员企业,包括联合包裹(UPS)、联邦快递(FedEx)、施耐德卡车运输公司(Schneider Trucking)、SAP 等。物联网曾经有人认为,物联网是大数据时代的基础。笔者认为,区块链技术是物联网时代的基础。典型应用场景分析一种可能的应用场景为:物联网络中每一个设备分配地址,给该地址所关联一个账户,用户通过向账户中支付费用可以租借设备,以执行相关动作,从而达到租借物联网的应用。典型的应用包括 PM2.5 监测点的数据获取、温度检测服务、服务器租赁、网络摄像头数据调用等等。另外,随着物联网设备的增多、边沿计算需求的增强,大量设备之间形成分布式自组织的管理模式,并且对容错性要求很高。区块链自身分布式和抗攻击的特点可以很好地融合到这一场景中。IBMIBM 在物联网领域已经持续投入了几十年的研发,目前正在探索使用区块链技术来降低物联网应用的成本。2015 年初,IBM 与三星宣布合作研发“去中心化的 P2P 自动遥测系统(Autonomous Decentralized Peer-to-Peer Telemetry)”系统,使用区块链作为物联网设备的共享账本,打造去中心化的物联网。Filament美国的 Filament 公司以区块链为基础提出了一套去中心化的物联网软件堆栈。通过创建一个智能设备目录,Filament 的物联网设备可以进行安全沟通、执行智能合约以及发送小额交易。基于上述技术,Filament 能够通过远程无线网络将辽阔范围内的工业基础设备沟通起来,其应用包括追踪自动售货机的存货和机器状态、检测铁轨的损耗、基于安全帽或救生衣的应急情况监测等。NeuroMesh2017 年 2 月,源自 MIT 的 NeuroMesh 物联网安全平台获得了 MIT 100K Accelerate 竞赛的亚军。该平台致力于成为“物联网疫苗”,能够检测和消除物联网中的有害程序,并将攻击源打入黑名单。所有运行 NeuroMesh 软件的物联网设备都通过访问区块链账本来识别其他节点和辨认潜在威胁。如果一个设备借助深度学习功能检测出可能的威胁,可通过发起投票的形式告知全网,由网络进一步对该威胁进行检测并做出处理。公共网络服务现有的互联网能正常运行,离不开很多近乎免费的网络服务,例如域名服务(DNS)。任何人都可以免费查询到域名,没有 DNS,现在的各种网站将无法访问。因此,对于网络系统来说,类似的基础服务必须要能做到安全可靠,并且低成本。区块链技术恰好具备这些特点,基于区块链打造的分布式 DNS 系统,将减少错误的记录和查询,并且可以更加稳定可靠地提供服务。其它场景区块链还有一些很有趣的应用场景,包括但不限于云存储、医疗、社交、游戏等多个方面。云存储Storj 项目提供了基于区块链的安全的分布式云存储服务。服务保证只有用户自己能看到自己的数据,并号称提供高速的下载速度和 99.99999% 的高可用性。用户还可以“出租”自己的额外硬盘空间来获得报酬。协议设计上,Storj 网络中的节点可以传递数据、验证远端数据的完整性和可用性、复原数据,以及商议合约和向其他节点付费。数据的安全性由数据分片(Data Sharding)和端到端加密提供,数据的完整性由可复原性证明(Proof of Retrievability)提供。医疗医院与医保医药公司,不同医院之间,甚至医院里不同部门之间的数据流动性往往很差。考虑到医疗健康数据的敏感性,笔者认为,如果能够满足数据访问权、使用权等规定的基础上促进医疗数据的提取和流动,健康大数据行业将迎来春天。目前,全球范围内的个人数据市场估值每年在 2000 亿美金左右。GemHealth 项目由区块链公司 Gem 于 2016 年 4 月提出,其目标除了用区块链存储医疗记录或数据,还包括借助区块链增强医疗健康数据在不同机构不同部门间的安全可转移性、促进全球病人身份识别、医疗设备数据安全收集与验证等。项目已与医疗行业多家公司签订了合作协议。Hu.Manity 是一家创业公司,提供健康数据的匿名出售服务。用户可以选择售卖个人健康数据,但这些数据会消除掉个人的隐私信息。麻省理工学院媒体实验室也在建立一个医疗数据的共享系统,允许病人自行选择分享哪些数据给医疗机构。通信和社交BitMessage 是一套去中心化通信系统,在点对点通信的基础上保护用户的匿名性和信息的隐私。BitMessage 协议在设计上充分参考了比特币,二者拥有相似的地址编码机制和消息传递机制。BitMessage 也用工作量证明(Proof-of-Work)机制防止通信网络受到大量垃圾信息的冲击。类似的,Twister 是一套去中心化的“微博”系统,Dot-Bit 是一套去中心化的 DNS 系统。投票Follow My Vote 项目致力于提供一个安全、透明的在线投票系统。通过使用该系统进行选举投票,投票者可以随时检查自己选票的存在和正确性,看到实时记票结果,并在改变主意时修改选票。该项目使用区块链进行记票,并开源其软件代码供社区用户审核。项目也为投票人身份认证、防止重复投票、投票隐私等难点问题提供了解决方案。在线音乐Ujo 音乐平台通过使用智能合约来创建一个透明的、去中心化的版权和版权所有者数据库来进行音乐版权税费的自动支付。预测Augur 是一个运行在以太坊上的预测市场平台。使用 Augur,来自全球不同地方的任何人都可发起自己的预测话题市场,或随意加入其它市场,来预测一些事件的发展结果。预测结果和奖金结算由智能合约严格控制,使得在平台上博弈的用户不用为安全性产生担忧。电子游戏2017 年 3 月,来自马来西亚的电子游戏工作室 Xhai Studios 宣布将区块链技术引入其电子游戏平台。工作室旗下的一些游戏将支持与 NEM 区块链的代币 XEM 整合。通过这一平台,游戏开发者可以在游戏架构中直接调用支付功能,消除对第三方支付的依赖;玩家则可以自由地将 XEM 和游戏内货币、点数等进行双向兑换。存证TODO:展开解释存证或版权案例 “纸贵版权” 引入公证处、版权局、知名高校作为版权存证联盟链的存证和监管节点,所有上链的版权存证信息都会经过多个节点的验证和监管,保证任何时刻均可出具具备国家承认的公证证明,具有最高司法效力。同时,通过在公证处部署联盟链存证节点服务器,存证主体即可视为公证处。在遭遇侵权行为时,区块链版权登记证书可作为证据证明版权归属,得到法院的采信。2018 年 12 月 22 日,北京互联网法院“天平链”正式发布。该区块链平台融合了司法鉴定中心、公证处、行业机构等,三个月时间内发展到 17 个节点,采集数据超过一百万条。这些存证数据有望提高电子诉讼的采证效率。发布于 2019-12-18 11:20区块链(Blockchain)区块链价值区块链技术赞同 454 条评论分享喜欢收藏申请转载文章被以下专栏收录区块链漫游指南区块
区块链的典型应用 - 知乎
区块链的典型应用 - 知乎首发于区块链漫游指南切换模式写文章登录/注册区块链的典型应用tohnee语言和文字可以改变世界科技创新,应用为王。一项新技术能否最终落地普及,有很多影响因素。其中很关键的一点便是能否找到合适的应用场景。以比特币网络为代表的大规模数字货币系统,长时间自治运行,支持了传统金融系统都难以实现的全球范围即时可靠交易。这为区块链技术的应用潜力引发了无限遐想。如果未来基于区块链技术构造的商业价值网络成为现实,所有的交易都将高效完成且无法伪造;所有签署的合同都能按照约定严格执行。这将极大降低整个商业体系运转的成本,同时大大提高社会沟通协作的效率。从这个意义上讲,基于区块链技术构建的未来商业网络,将可能引发继互联网之后又一次巨大的产业变革。目前,金融交易系统已经开始验证和使用区块链系统。包括征信管理、跨国交易、跨组织合作、资源共享和物联网等诸多领域,也涌现出大量有趣的应用案例。本章将通过剖析这些典型的应用场景,展现区块链技术为不同行业带来的创新潜力。应用场景概览区块链技术已经从单纯的技术探讨走向了应用落地的阶段。国内外已经出现大量与之相关的企业和团队。有些企业已经结合自身业务摸索出了颇具特色的应用场景,更多的企业还处于不断探索和验证的阶段。实际上,要找到合适的应用场景,还是要从区块链技术自身的特性出发进行分析。区块链在不引入第三方中介机构的前提下,可以提供去中心化、不可篡改、安全可靠等特性保证。因此,所有直接或间接依赖于第三方担保机构的活动,均可能从区块链技术中获益。区块链自身维护着一个按时间顺序持续增长、不可篡改的数据记录,当现实或数字世界中的资产可以生成数字摘要时,区块链便成为确权类应用的完美载体,提供包含所属权和时间戳的数字证据。可编程的智能合约使得在区块链上登记的资产可以获得在现实世界中难以提供的流动性,并能够保证合约规则的透明和不可篡改。这就为区块链上诞生更多创新的经济活动提供了土壤,为社会资源价值提供更加高效且安全的流动渠道。此外,还需要思考区块链解决方案的合理边界。面向大众消费者的区块链应用需要做到公开、透明、可审计,既可以部署在无边界的公有链,也可以部署在应用生态内多中心节点共同维护的区块链;面向企业内部或多个企业间的商业区块链场景,则可将区块链的维护节点和可见性限制在联盟内部,并用智能合约重点解决联盟成员间信任或信息不对等问题,以提高经济活动效率。未来几年内,可能深入应用区块链技术的场景将包括:金融服务:区块链带来的潜在优势包括降低交易成本、减少跨组织交易风险等。该领域的区块链应用目前最受关注,全球不少银行和金融交易机构都是主力推动者。部分投资机构也在应用区块链技术降低管理成本和管控风险。从另一方面,要注意可能引发的问题和风险。例如,DAO(Decentralized Autonomous Organization 是史上最大的一次众筹活动,基于区块链技术确保资金的管理和投放)这样的众筹实验,提醒应用者在业务和运营层面都要谨慎处理。征信和权属管理:征信和权属的数字化管理是大型社交平台和保险公司都梦寐以求的。目前该领域的主要技术问题包括缺乏足够的数据和分析能力;缺乏可靠的平台支持以及有效的数据整合管理等。区块链被认为可以促进数据交易和流动,提供安全可靠的支持。征信行业的门槛比较高,需要多方资源共同推动。资源共享:以 Airbnb 为代表的分享经济公司将欢迎去中心化应用,可以降低管理成本。该领域主题相对集中,设计空间大,受到大量的投资关注。贸易管理:区块链技术可以帮助自动化国际贸易和物流供应链领域中繁琐的手续和流程。基于区块链设计的贸易管理方案会为参与的多方企业带来极大的便利。另外,贸易中销售和法律合同的数字化、货物监控与检测、实时支付等方向都可能成为创业公司的突破口。物联网:物联网也是很适合应用区块链技术的一个领域,预计未来几年内会有大量应用出现,特别是租赁、物流等特定场景,都是很合适结合区块链技术的场景。但目前阶段,物联网自身的技术局限将造成短期内不会出现大规模应用。这些行业各有不同的特点,但或多或少都需要第三方担保机构的参与,因此都可能从区块链技术中获得益处。当然,对于商业系统来说,技术支持只是一种手段,根本上需要满足业务需求。区块链作为一个底层的平台技术,要利用好它,需要根据行业特性进行综合考量设计,对其上的业务系统和商业体系提供合理的支持。有理由相信,区块链技术落地的案例会越来越多。这也会进一步促进新技术在传统行业中的应用,带来更多的创新业务和场景。金融服务金融活动影响人类社会的方方面面,目前涉及货币、证券、保险、抵押、捐赠等诸多行业。通过金融交易,可以优化社会资源运转效率,实现资源使用的最优化。可以说,人类社会的文明发展,离不开金融交易。交易本质上交换的是价值的所属权。为了完成一些贵重资产(例如房产、车辆)的交易,往往需要依靠中介和担保机构,不仅过程繁琐,而且手续费用高昂。之所以需要第三方机构介入,是因为交易双方无法充分信任对方提供的信息。一方面,证明所属权只能通过相关机构开具的证明材料,存在造假风险;另一方面,交换过程手续繁琐,存在篡改和错误的风险。为了确保金融交易的可靠完成,出现了第三方担保机构这样的角色。它们通过提供信任保障服务,提高了社会整体经济活动的效率。但现有的第三方中介机制往往存在成本高、时间周期长、流程复杂、容易出错等缺陷。因此,金融领域长期存在提高交易效率的迫切需求。区块链技术可以为金融服务提供有效、可信的所属权证明,以及相当可靠的合约确保机制。数字货币银行从角色上,一般分为中央银行(央行)和普通银行。中央银行的两大职能是“促进宏观经济稳定”和“维护金融稳定”(《金融的本质》,本·伯南克(Ben Bernanke),中信出版社,2014 年出版),主要手段就是管理各种证券和利率。央行的存在,为整个社会的金融体系提供了最终的信用担保。普通银行业则往往基于央行的信用,作为中介和担保方,来协助完成多方的金融交易。银行活动主要包括发行货币、完成存贷款等功能。为了保障货币价值稳定,发行机构必须能时时刻刻保证交易的可靠性和确定性。为了做到这一点,传统的金融系统设计了复杂的安全流程,采用了极为复杂的软件和硬件方案,其建设和维护成本都十分昂贵。即便如此,这些系统仍然存在诸多缺陷,每年都会出现安全攻击和金融欺诈事件。此外,交易过程还常常需要经由额外的支付企业进行处理。这些实际上都增大了交易成本。以区块链技术为基础的数字货币的出现,对货币的研究和实践都提出了新的启发,被认为有可能促使这一领域发生革命性变化。除了众所周知的比特币等数字货币实验之外,还有诸多金融机构进行了有意义的尝试,尤其是各国进行的法定数字货币研究,具备越来越多的实践意义。中国人民银行投入区块链研究2016 年,中国人民银行对外发布消息,称深入研究了数字货币涉及的相关技术,包括区块链技术、移动支付、可信可控云计算、密码算法、安全芯片等,被认为积极关注区块链技术的发展。实际上,央行对于区块链技术的研究很早便已开展。2014 年,央行成立发行数字货币的专门研究小组对基于区块链的数字货币进行研究,次年形成研究报告。2016 年 1 月 20 日,央行专门组织了“数字货币研讨会”,邀请了业内的区块链技术专家就数字货币发行的总体框架、演进、以及国家加密货币等话题进行了研讨。会后,发布对我国银行业数字货币的战略性发展思路,提出要早日发行数字货币,并利用数字货币相关技术来打击金融犯罪活动。2016 年 12 月,央行成立数字货币研究所。初步公开设计为“由央行主导,在保持实物现金发行的同时发行以加密算法为基础的数字货币,M0(流通中的现金)的一部分由数字货币构成。为充分保障数字货币的安全性,发行者可采用安全芯片为载体来保护密钥和算法运算过程的安全”。2018 年 7 月,央行数字货币研究所在联合国国际电信联盟(ITU)会议上发表了关于法定数字货币双层架构的主题演讲。从目前看,央行很可能采用联盟形式,由中央银行与国家系统重要性金融机构来共同维护分布式账本系统,直接发行和管理数字货币,作为流通现金的一种形式。一旦实施,将对现有的支付清算体系,特别商业银行产生重大影响。数字货币由于其电子属性,在发行和防伪方面成本都优于已有的纸质货币。另外,相对信用卡等支付手段,数字现金很难被盗用,大大降低了管理成本。同时也要注意到由银行发行数字货币在匿名程度、点对点直接支付、利息计算等方面仍有待商榷。加拿大银行提出新的数字货币2016 年 6 月,加拿大央行公开正在开发基于区块链技术的数字版加拿大元(名称为 CAD 币),以允许用户使用加元来兑换该数字货币。经过验证的对手方将会处理货币交易;另外,如果需要,银行将保留销毁 CAD 币的权利。发行 CAD 币是更大的一个探索型科技项目 Jasper 的一部分。除了加拿大央行外,据悉,蒙特利尔银行、加拿大帝国商业银行、加拿大皇家银行、加拿大丰业银行、多伦多道明银行等多家机构也都参与了该项目。Jasper 项目的目标是希望评估分布式账本技术对金融基础设施的变革潜力。通过在大额支付系统的概念验证,认为在基于分布式账本的金融基础设施中应重视监管能力;另外,虽然分布式支付系统并不能降低运营风险,但在与更广泛的金融基础设施进行合作互动时,有助于实现规模效益,实现全行业的效率提升。金融时报:Canada experiments with digital dollar on blockchain,2016-06-16。英国央行实现 RSCoin英国央行(英格兰银行)在数字货币方面进展十分突出,已经实现了基于分布式账本平台的数字货币原型系统——RSCoin。旨在强化本国经济及国际贸易。RSCoin目标是提供一个由中央银行控制的、可扩展的数字货币,采用了中央银行-商业银行双层链架构、改进版的两阶段提交(Two Phase Commitment),以及多链之间的交叉验证机制。该货币由中央银行发行,交易机构维护底层账本,并定期提交给中央银行。因为该系统主要是央行和下属银行之间使用,通过提前建立一定的信任基础和采用分片机制,可以提供较好的处理性能(单记账机构可以达到2000笔每秒)。RSCoin理论上可以作为面向全社会的支付手段,但技术和监管细节上需要进一步完善。英国央行对 RSCoin 进行了推广,希望能尽快普及该数字货币,以带来节约经济成本、促进经济发展的效果。同时,英国央行认为,数字货币相对传统货币更适合国际贸易等场景,同时理论上具备成为各国货币兑换媒介的潜力。支付清结算业务支付和清结算是现代金融行业十分重要的操作。随着信息技术的发展,支付清结算业务系统的效率也在不断提高。但当资金的清算涉及到多个交易主体和多个认证环节时效率仍然不高,特别涉及到跨境多方交易等场景时。区块链技术在处理交易时即确保了交易记录的不可篡改性和对交易结果的有效确认,有望节约清结算的人力和时间成本,降低机构间的争议,提高自动化处理效率。SWIFT 完成跨银行的分布式账本验证2018 年 3 月,环球同业银行金融电讯协会(SWIFT)完成了涉及到 34 家银行的分布式账本验证。验证重点关注基于超级账本项目的分布式账本技术能否满足监管、安全、隐私性等方面的需求。验证表明分布式账本技术可以满足自动化的资产管理需求,为未来多银行间合作提供重要支撑。SWIFT 研发中心负责人 Damien Vanderveken 称:“验证进行得相当好,证实了分布式账本技术的巨大进展,尤其是超级账本 Fabric 项目 1.0(The PoC went extremely well, proving the fantastic progress that has been made with DLT and the Hyperledger Fabric 1.0 in particular)”。IBM 构建全球支付网络TODO: https://www.coindesk.com/ibm-signs-6-banks-to-issue-stablecoins-and-use-stellars-xlm-cryptocurrency2018 年 8 月,IBM 推出了基于区块链的全球支付解决方案 —— WorldWire,该网络使用 Stellar 协议,可以实现在数秒钟之内完成跨境支付的清结算。IBM 认为该新型支付解决方案可以很好的接入已有的支付系统,并且有能力支持包括法币、数字资产、稳定币等资产的支付,所有交易存储在账本上,可以持久保留。目前,该支付网络上已经实现了与美元挂钩的稳定币,IBM 正在与多家国际银行(巴西布拉德斯科银行、釜山银行等)合作,计划增加更多类型的稳定币支持。巴克莱银行用区块链进行国际贸易结算在国际贸易活动中,买卖双方可能互不信任。因此需要银行作为买卖双方的保证人,代为收款交单,并以银行信用代替商业信用。区块链可以为信用证交易参与方提供共同账本,允许银行和其它参与方拥有经过确认的共同交易记录并据此履约,从而降低风险和成本。2016 年 9 月,英国巴克莱银行用区块链技术完成了一笔国际贸易的结算,贸易金额 10 万美元,出口商品是爱尔兰农场出产的芝士和黄油,进口商是位于离岸群岛塞舌尔的一家贸易商。结算用时不到 4 小时,而传统采用信用证方式做此类结算需要 7 到 10 天。在这笔贸易背后,区块链提供了记账和交易处理系统,替代了传统信用证结算过程中占用大量人力和时间的审单、制单、电报或邮寄等流程。中国邮储银行在核心业务系统中使用区块链2016 年 10 月,中国邮储银行宣布携手 IBM 推出基于区块链技术的资产托管系统,是中国银行业首次将区块链技术成功应用于核心业务系统。新的业务系统免去了重复的信用校验过程,将原有业务环节缩短了约 60-80% 的时间,提高了信用交易的效率。多家银行合作推出信用证区块链2017 年 7 月,民生银行、中信银行、中国银行和苏宁银行基于超级账本技术推出了首家基于区块链的信用证业务平台。该业务上线当日交易额即达到了 1 亿人民币,目前,每天交易额在十亿量级。该系统与传统的信用证结算不同,没有使用 SWIFT 代码,而是使用独创的信用证交换系统。基于区块链技术,不仅大幅降低了成本,还提高了交易效率和安全性。当然,如何与已有的基于 SWIFT 系统的国际业务打通,将是该平台面临的挑战之一。蚂蚁金服推出区块链跨境汇款服务2018 年 6 月 25 日,蚂蚁金服宣布其基于区块链的电子钱包跨境汇款服务在香港上线。该系统实现香港金管局、新加坡金管局、港版支付宝(Alipay HK)、渣打银行、菲律宾钱包 GCash 间的跨机构协同,Alipay HK 用户可基于区块链技术向 Gcash 汇款,汇款时间为 3~6 秒。摩根大通用区块链进行机构间实时支付2019 年 2 月,摩根大通宣布推出基于区块链的数字货币”JPM Coin“,以实现客户之间的实时结算。据悉,每个 JPM Coin 暂时等价 1 美元。摩根大通的机构客户向指定账户存款后可获得等值的 JPM Coin。通过区块链,机构之间可以以 JPM Coin 为价值载体进行实时交易。持有 JPM Coin 的机构客户可在摩根大通实时赎回美元。这意味着这家美国最大的金融服务机构已经开始主动拥抱区块链科技带来的新变化。目前,JPM Coin 仅限大型机构客户使用,并将持续与监管部门合作。其它新型支付业务基于区块链技术,出现了大量的创新支付企业,这些支付企业展示了利用区块链技术带来的巨大商业优势。Abra:区块链数字钱包,以近乎实时的速度进行跨境支付,无需银行账户,实现不同币种的兑换,融资超过千万美金。Bitfinex:组建 Tether Limited 公司来发行稳定币 USDT,作为最流行的稳定币,市值超过 10 亿美金。稳定币通过绑定代币到法定货币以保障价格的稳定性。如果抵押过程公开并支持审计,则可以降低用户因为代币价格波动带来的风险。Bitwage:基于比特币区块链的跨境工资支付平台,可以实现每小时的工资支付,方便跨国企业进行外包工资管理。BitPOS:澳大利亚创业企业,提供基于比特币的低成本的快捷线上支付,适用于餐饮行业。Circle:由区块链充当支付网络,允许用户进行跨币种、跨境的快速汇款。Circle 获得了来自 IDG、百度的超过 6000 万美金的 D 轮投资。2018 年 9 月,Circle 推出了稳定币 USDC,上市 2 个月,USDC 的市值已达到 2 亿美元。Ripple:实现跨境的多币种、低成本、实时交易,引入了网关概念(类似银行),结构偏中心化,可以与银行等金融机构合作完成跨境支付。证券交易后处理证券交易包括交易执行环节和交易后处理环节。交易环节本身相对简单,主要是由交易系统(高性能实时处理系统)完成电子数据库中内容的变更。中心化的验证系统往往极为复杂和昂贵。交易指令执行后的清算(计算交易方的财务义务)和结算(最终资产的转移)环节也十分复杂,需要大量的人力成本和时间成本,并且容易出错。目前来看,基于区块链的处理系统还难以实现海量交易系统所需要的性能(典型性能为每秒数万笔以上成交,日处理能力超过五千万笔委托、三千万笔成交)。但在交易的审核和清算环节,区块链技术存在诸多的优势,可以极大降低处理时间,同时减少人工的参与。2016 年 2 月,咨询公司 Oliver Wyman 在给 SWIFT(环球同业银行金融电讯协会)提供的研究报告《Blockchain in Capital Markets -- The Prize and the Journey》中预计,全球清算行为成本约 50~100 亿美元,结算成本、托管成本和担保物管理成本 400~450 亿美元(390 亿美元为托管链的市场主体成本),而交易后流程数据及分析花费 200~250 亿美元。2016 年 4 月,欧洲央行在报告《Distributed ledger technologies in securities post-trading》中指出,区块链作为分布式账本技术,可以很好地节约对账的成本,同时简化交易过程。相对原先的交易过程,可以近乎实时的变更证券的所有权。2015 年 10 月,美国纳斯达克(Nasdaq)证券交易所推出区块链平台 Nasdaq Linq,实现主要面向一级市场的股票交易流程。通过该平台进行股票发行的发行者将享有“数字化”的所有权。其它证券相关案例还包括:BitShare 推出基于区块链的证券发行平台,号称每秒达到 10 万笔交易。DAH 为金融市场交易提供基于区块链的交易系统。获得澳洲证交所项目。Symbiont 帮助金融企业创建存储于区块链的智能债券,当条件符合时,清算立即执行。http://Overstock.com 推出基于区块链的私有和公开股权交易“T0”平台,提出“交易即结算”(The trade is the settlement)的理念,主要目标是建立证券交易实时清算结算的全新系统。高盛为一种叫做“SETLcoin”的数字货币申请专利,用于为股票和债券等资产交易提供“近乎立即执行和结算”的服务。供应链金融供应链金融是一种重要的融资模式。传统上一般由银行基于真实贸易,以核心企业信用为担保来连接上下游企业。供应链金融可为供应链上的企业提供自偿性融资,有助于缓解小微企业融资难的问题,增强供应链活力。该领域长期以来一直存在众多问题:弱势成员企业供货应收账款周期长,面临较大的资金压力,但融资难。银行从风控角度考虑,愿意为核心企业上游直接供应商提供保理服务,为直接下游经销商提供融资,但不愿意给其它企业(通常往往规模较小,缺乏足够抵押)授信。而核心企业和直接上下游企业往往不愿意承担风险,导致整个链条缺乏活力;供应链上下游企业关系密切,风险往往息息相关。来自上下游的不确定性(特别是核心企业)增大了整个供应链企业的整体风险。由于供应链往往涉及到数十家甚至数百家企业,供货生命周期很长,涉及生产制造、运输、担保等多种环节,信息隐瞒或票据篡改造假的情况很难避免。银行要获取多家企业真实贸易信息的难度很大,造成实际融资成本高居不下。作为主要融资工具的票据(包括商业汇票、银行汇票)使用场景局限,票据实际可兑换情况和价值依赖背书企业的信誉和实力,实际操作难度大。供应链金融的业务特点,使得其十分契合区块链的技术特点。区块链上数据都带有签名和时间戳,提供高度可靠的历史记录,可以有效降低银行对信息可靠性的疑虑,实现核心企业信用在链上的分割与流转。最终提高整个供应链的金融效率。目前,供应链金融区块链平台主要以联盟链的形式打造,具有如下业务优势:时间戳设计保证债权拆分、流转后信用不变,整体流程完整可追溯;分布式数据存储打破信息不对称,防止信息篡改和造假;智能合约自动执行,减少人工干预,提高资金流通效率。为使供应链金融迅速且有序发展,我国也推出一系列指导意见。如 2017 年七部门联合印发的《小微企业应收账款融资专项行动工作方案(2017-2019年)》提到:“推动供应链核心企业支持小微企业应收账款融资,引导金融机构和其他融资服务机构扩大应收账款融资业务规模”;此外,2017 年国务院办公厅《关于积极推进供应链创新与应用的指导意见》也指出:“积极稳妥发展供应链金融”。这些在政策层面上的指导建议,促进了国内供应链金融的发展速度与态势。2017 年 3 月,深圳区块链金融服务有限公司基于区块链技术与全国范围内多家银行建立联盟,共同推出“票链”产品,通过创新模式为持有银行承兑汇票的中小微企业提供高效便捷的票据融资服务。“票链”产品发布后,在江西地区率先进行试点运营,上线首月交易规模已近亿元人民币。其中绝大部分交易标的为数十万元的小额银行承兑汇票,切实解决了中小微企业客户长期面对的融资难、融资贵难题。2017 年 4 月,易见科技供应链金融平台上线运营,2018 年 9 月发布 2.0 版本;自上线以来,已帮助近200家企业及金融机构完成了超过 40 亿元的供应链金融业务,线上融资合同近 500 份,涉及医药、化工、制造、大宗、物流、航空和地产等多个行业。易见区块平台基于超级账本技术,产品体系包括供应链贸易系统、供应链融资平台和供应链资产证券化平台。2018 年 4 月 13 日,平安集团金融壹帐通在深圳推出国内首个连接金融机构和中小企业的“壹企银中小企业智能金融服务平台”,将助力银行等金融机构解决中小企业融资难题。壹企银广泛应用金融科技最新技术,全程实现银行等金融机构信贷业务流程智能化,点对点实时打通中小企业信息“死结”,从而实现中小企业融资快捷、高效和低成本、低风险。“Chained Finance”区块链金融平台是由国内互联网金融公司点融和富士康旗下金融平台富金通共同推出的供应链金融平台,在业内首次借助区块链技术破解供应链金融和中小企业融资难题。另外,类似“一带一路”这样创新的投资建设模式,会碰到来自地域、货币、物流等各方面的挑战。现在已经有一些部门对区块链技术进行探索应用。区块链技术可以让原先无法交易的双方(例如,不存在多方都认可的国际货币储备的情况下)顺利完成交易,并且降低贸易风险、减少流程管控的成本。税收服务传统的税收服务体系在税务信用等级、税收遵从、税源监控等领域存在数据孤岛、信息壁垒等难题,这也导致税务管理中存在大量增值税发票虚开虚抵、农产品优惠政策骗税、出口骗税、稽查取证等争议。基于区块链的分布式账本可记录跨地域、跨企业的电子票信息,打破数据壁垒。例如,通过融入密码学算法及数据可信上链服务,在保护纳税人数据的同时,实现以税票为中心的发生过程监控。将纳税规则写入智能合约,系统根据往来业务和数据实现交易与开票数据的自动匹配、核对、缴纳,避免虚开错开,实现税源的全面监控。而区块链透明、弱中心化的特点可为建立税务、工商、海关、银行等部门横向信息的全面掌握分析机制奠定基础,提升征税效率与准确性。2018 年 8 月 10 日,由深圳市税务局主导、腾讯提供底层技术支持,深圳国贸旋转餐厅开出了国内"首张"区块链电子发票。通过在微信中整合支付、开票、报销等功能,该成果致力于实现“交易即开票,开票即报销”。以区块链作为底层支撑技术,接入税务局、微信支付、财务软件商、商家等相关方,可确保发票唯一,并且领票、开票、流转、入账、报销等流程信息完整可追溯,解决传统系统“一票多报、虚报虚抵”等难题,降低经营成本和税收风险。众筹管理区块链自身带来的多方信任合作机制,有望提高众筹的效率和安全性。该领域的尝试目前主要是“首次代币发行(Initial Coin Offering,ICO)”形式。ICO 设计思想十分简单。项目发起方通过售卖项目早期的数字资产(代币)向外界融资,投资者可以直接以比特币等形式参与。当项目上线后,如果能得以健康成长,项目代币价格上涨,投资者可以获得回报,并且可以选择任何时候卖出这些代币而无条件退出。最早的 ICO 出现在 2013 年 6 月,万事达币(MSC)在 Bitcointalk 论坛上众筹 5000 个比特币。虽然,很可惜该项目后来并没有成功,但开启了 ICO 的浪潮。2014 年,比较出名的如比特股 Bitshares 和以太坊 Ethereum 先后发起 ICO,并且随着平台自身的发展,投资者获取了大量的回报。这些早期项目支持了区块链领域的初创企业,同时探索了新的众筹模式。2016 年 4 月 30 日上线的 DAO(Decentralized Autonomous Organization)项目,试图打造基于以太坊的众筹平台,更是一度创下历史最高的融资记录,数额超过 1.6 亿美金。该项目暴露出这种创新形式的组织者们在应对安全风险时候缺乏足够的应对经验。6 月 12 日,有技术人员报告合约执行过程中存在软件漏洞,但很遗憾并未得到组织的重视和及时修复。四天后,黑客利用漏洞转移了 360 万枚以太币,当时价值超过 5000 万美金。虽然最后采用了一些技术手段来挽回经济损失,但该事件毫无疑问给以太坊平台带来了负面影响,也给 ICO 这种新模式的流程管理敲响了警钟。2017 年开始,传统风投基金也开始尝试用 ICO 来募集资金。Blockchain Capital 在 2017 年发行的一支基金创新地采用了传统方式加 ICO 的混合方式进行募资,其中传统部分规模 4000 万美元,ICO 部分规模 1000 万美元。4 月 10 日,ICO 部分 1000 万美元的募集目标在启动后六小时内全部完成。整个 2017 年全球超过 1000 个 ICO 项目,总募资额超过 40 亿美金。Telegram 在 2018 年初通过两轮 ICO 共募集资金 17 亿美金,值得注意的是,在第二轮时已经明确限制最低投资门槛为 100 万美元。由于市场过于火爆,投资者投机心理加重,同时出现了大量欺诈性的项目。这些项目的白皮书粗制滥造,有的项目甚至连白皮书都没有,被戏称为“空气项目”。2017 年下半年开始,大量不成熟项目因为无法完成预设目标而破灭,这被认为是第一次 ICO 泡沫的结束,同时市场在泡沫后变得更加成熟和理性。同期,各国开始加强监管,要么将其纳入已有监管体系,要么暂时禁止 ICO 活动。2017 年 8 月 28 日,美国证监会发布关于谨防 ICO 骗局的警告,后将 ICO 纳入证券监管;此外,澳大利亚、加拿大、印度、菲律宾以及欧洲主要国家也将 ICO 纳入监管。同年 9 月 4 日,中国人民银行等 7 部门发文,称 ICO 为“未经批准非法公开融资的行为”,各类代币发行融资活动应立即停止。这些措施提高了项目发行的门槛,客观上促进了整个生态系统的进化。全球范围内 ICO 项目发行的频率明显下降,但优质项目比例明显提高。客观来看,作为一种创新的模式,ICO 众筹方式相对 IPO 更加灵活,适合早期中小资金额的创业项目。但目前 ICO 项目仍属于法律监管的灰色地带,往往存在如下问题:缺少法律支持和监管机制。作为一种新型融资行为,由于缺乏相关法规,监管流程很难执行。出现问题后投资者无法得到合理赔偿;项目的评估难度很大。进行 ICO 的项目往往是科技和创新含量较高的产品,无论是审查机构还是普通投资者都很难进行准确评估;我国《证券法》第二章第 10 条明确规定:“公开发行证券,必须符合法律、行政法规规定的条件,并依法报经国务院证券监督管理机构或者国务院授权的部门核准;未经依法核准,任何单位和个人不得公开发行证券”。这可以保障投资者的长期权益,有利于建设健康的交易环境。因此,为了解决 ICO 的现有缺陷,应当参考 IPO 等证券管理办法制定监管框架。具体可从三个方面进行完善:从项目方角度需要通过行业共识建立规范的准入机制。如要求必要信息的公开和接受第三方的监督审查,同时设定融资额度限制。通过这些机制可以避免欺诈,保护市场投资者;从投资者角度在一定时间内应当提高入场门槛。如募集资金超过一定额度的项目只能接受来自专业投资机构的投资。同时加强投资者教育和风险告知;最后,法律界需要和科技界开展合作,尽早主动出台相关监管法规,将这一新型募资方式纳入到正式监管之下,并建立完整的市场机制。征信管理征信管理是一个巨大的潜在市场,据称超过千亿规模(可参考美国富国银行报告和平安证券报告),也是目前大数据应用领域最有前途的方向之一。目前征信相关的大量有效数据集中在少数机构手中。由于这些数据太过敏感,并且具备极高的商业价值,往往会被严密保护起来,形成很高的行业门槛。虽然现在大量的互联网企业(包括各类社交网站)尝试从各种维度获取了海量的用户信息,但从征信角度看,这些数据仍然存在若干问题。这些问题主要包括:数据量不足:数据量越大,能获得的价值自然越高,过少的数据量无法产生有效价值;相关度较差:最核心的数据也往往是最敏感的。在隐私高度敏感的今天,用户都不希望暴露过多数据给第三方,因此企业获取到数据中有效成分往往很少;时效性不足:企业可以从明面上获取到的用户数据往往是过时的,甚至存在虚假信息,对相关分析的可信度造成严重干扰。区块链天然存在着无法篡改、不可抵赖的特性。同时,区块链平台将可能提供前所未有规模的相关性极高的数据,这些数据可以在时空中准确定位,并严格关联到用户。因此,基于区块链提供数据进行征信管理,将大大提高信用评估的准确率,同时降低评估成本。另外,跟传统依靠人工的审核过程不同,区块链中交易处理完全遵循约定自动化执行。基于区块链的信用机制将天然具备稳定性和中立性。目前,包括 IDG、腾讯、安永、普华永道等都已投资或进入基于区块链的征信管理领域,特别是跟保险和互助经济相关的应用场景。保险行业保险行业区块链倡议组织(Blockchain Insurance Industry Initiative,B3i)诞生于 2016 年下半年,面向保险行业,探索基于分布式账本的新型技术。分布式账本带来的可信能力,将有望给保险行业带来新的变革。目前,B3i 已经包括超过 40 家会员企业,包括美国国际集团、友邦保险、安联保险、瑞士再保险等保险行业巨头。权属管理与溯源区块链技术可以用于产权、版权等所有权的管理和追踪。其中包括汽车、房屋、艺术品等各种贵重物品的交易等,也包括数字出版物,以及可以标记的数字资源。目前权属管理领域存在的几个难题是:物品所有权的确认和管理;交易的安全性和可靠性保障;必要的隐私保护机制。以房屋交易为例。买卖双方往往需要依托中介机构来确保交易的进行,并通过纸质的材料证明房屋所有权。但实际上,很多时候中介机构也无法确保交易的正常进行。而利用区块链技术,物品的所有权是写在数字链上的,谁都无法修改。并且一旦出现合同中约定情况,区块链技术将确保合同能得到准确执行。这能有效减少传统情况下纠纷仲裁环节的人工干预和执行成本。例如,公正通(Factom)尝试使用区块链技术来革新商业社会和政府部门的数据管理和数据记录方式。包括审计系统、医疗信息记录、供应链管理、投票系统、财产契据、法律应用、金融系统等。它将待确权数据的指纹存放到基于区块链的分布式账本中,可以提供资产所有权的追踪服务。区块链账本共享、信息可追踪溯源且不可篡改的特性同样可用于打击造假和防范欺诈。Everledger 自 2016 年起就研究基于区块链技术实现贵重资产检测系统,将钻石或者艺术品等的数字指纹信息(包括钻石超过40个数据点的颜色、清晰度、切割和重量等信息)记录在区块链上。并于 2017 年宣布与 IBM 合作,实现生产商、加工商、运送方、零售商等多方之间的可信高效协作。类似地,针对食品造假这一难题,IBM、沃尔玛、清华大学于 2016 年底共同宣布将在食品安全领域展开合作,将用区块链技术搭建透明可追溯的跨境食品供应链。这一全新的供应链将改善食品的溯源和物流环节,打造更为安全的全球食品市场。其他项目在人力资源和教育领域,MIT 研究员朱莉安娜·纳扎雷(Juliana Nazaré)和学术创新部主管菲利普·施密特(Philipp Schmidt)发表了文章《MIT Media Lab Uses the Bitcoin Blockchain for Digital Certificates》,介绍基于区块链的学历认证系统。基于该系统,用人单位可以确认求职者的学历信息是真实可靠的。2018 年 2 月,麻省理工学院向应届毕业生颁发了首批基于区块链的数字学位证书。此外,还包括一些其他相关的应用项目:Chronicled:基于区块链的球鞋鉴定方案,为正品球鞋添加电子标签,记录在区块链上。Mediachain:通过 metadata 协议,将内容创造者与作品唯一对应。Mycelia:区块链产权保护项目,为音乐人实现音乐的自由交易。Tierion: 将用户数据锚定在比特币或以太坊区块链上,并生成“区块链收据”。Ziggurat:基于区块链提供文字、图片、音视频版权资产的登记和管理服务。资源共享当前,以 Uber、Airbnb 为代表的共享经济模式正在多个垂直领域冲击传统行业。这一模式鼓励人们通过互联网的方式共享闲置资源。资源共享目前面临的问题主要包括:共享过程成本过高;用户行为评价难;共享服务管理难。区块链技术为解决上述问题提供了更多可能。相比于依赖于中间方的资源共享模式,基于区块链的模式有潜力更直接的连接资源的供给方和需求方,其透明、不可篡改的特性有助于减小摩擦。有人认为区块链技术会成为新一代共享经济的基石。笔者认为,区块链在资源共享领域是否存在价值,还要看能否比传统的专业供应者或中间方形式实现更高的效率和更低的成本,同时不能损害用户体验。短租共享大量提供短租服务的公司已经开始尝试用区块链来解决共享中的难题。高盛在报告《Blockchain: Putting Theory into Practice》中宣称:Airbnb 等 P2P 住宿平台已经开始通过利用私人住所打造公开市场来变革住宿行业,但是这种服务的接受程度可能会因人们对人身安全以及财产损失的担忧而受到限制。而如果通过引入安全且无法篡改的数字化资质和信用管理系统,我们认为区块链就能有助于提升 P2P 住宿的接受度。该报告还指出,可能采用区块链技术的企业包括 Airbnb、HomeAway 以及 OneFineStay 等,市场规模为 30~90 亿美元。社区能源共享在纽约布鲁克林的一个街区,已有项目尝试将家庭太阳能发的电通过社区的电力网络直接进行买卖。具体的交易不再经过电网公司,而是通过区块链执行。与之类似,ConsenSys 和微电网开发商 LO3 提出共建光伏发电交易网络,实现点对点的能源交易。这些方案的主要难题包括:太阳能电池管理;社区电网构建;电力储备系统搭建;低成本交易系统支持。现在已经有大量创业团队在解决这些问题,特别是硬件部分已经有了不少解决方案。而通过区块链技术打造的平台可以解决最后一个问题,即低成本地实现社区内的可靠交易系统。电商平台传统情况下,电商平台起到了中介的作用。一旦买卖双方发生纠纷,电商平台会作为第三方机构进行仲裁。这种模式存在着周期长、缺乏公证、成本高等缺点。OpenBazaar 试图在无中介的情形下,实现安全电商交易。具体地,OpenBazaar 提供的分布式电商平台,通过多方签名机制和信誉评分机制,让众多参与者合作进行评估,实现零成本解决纠纷问题。大数据共享大数据时代里,价值来自于对数据的挖掘,数据维度越多,体积越大,潜在价值也就越高。一直以来,比较让人头疼的问题是如何评估数据的价值,如何利用数据进行交换和交易,以及如何避免宝贵的数据在未经许可的情况下泄露出去。区块链技术为解决这些问题提供了潜在的可能。利用共同记录的共享账本,数据在多方之间的流动将得到实时的追踪和管理。通过对敏感信息的脱敏处理和访问权限的设定,区块链可以对大数据的共享授权进行精细化管控,规范和促进大数据的交易与流通。减小共享风险传统的资源共享平台在遇到经济纠纷时会充当调解和仲裁者的角色。对于区块链共享平台,目前还存在线下复杂交易难以数字化等问题。除了引入信誉评分、多方评估等机制,也有方案提出引入保险机制来对冲风险。2016 年 7 月,德勤、Stratumn 和 LemonWay 共同推出一个为共享经济场景设计的“微保险”概念平台,称为 LenderBot。针对共享经济活动中临时交换资产可能产生的风险,LenderBot 允许用户在区块链上注册定制的微保险,并为共享的资产(如相机、手机、电脑)投保。区块链在其中扮演了可信第三方和条款执行者的角色。物流与供应链物流与供应链行业被认为是区块链一个很有前景的应用方向。Gartner 一项调查显示,接近 60% 的物流相关企业计划考虑使用分布式账本技术。该行业往往涉及到诸多实体,包括物流、资金流、信息流等,这些实体之间存在大量复杂的协作和沟通。传统模式下,不同实体各自保存各自的供应链信息,严重缺乏透明度,造成了较高的时间成本和金钱成本,而且一旦出现问题(冒领、货物假冒等),难以追查和处理。通过区块链,各方可以获得一个透明可靠的统一信息平台,可以实时查看状态,降低物流成本,追溯物品的生产和运送全过程,从而提高供应链管理的效率。当发生纠纷时,举证和追查也变得更加清晰和容易。例如,运送方通过扫描二维码来证明货物到达指定区域,并自动收取提前约定的费用;冷链运输过程中通过温度传感器实时检测货物的温度信息并记录在链等。来自美国加州的 Skuchain 公司创建基于区块链的新型供应链解决方案,实现商品流与资金流的同步,同时缓解假货问题。马士基推出基于区块链的跨境供应链解决方案2017 年 3 月,马士基和 IBM 宣布,计划与由货运公司、货运代理商、海运承运商、港口和海关当局构成的物流网络合作,构建一个新型全球贸易数字化解决方案 TradeLens。该方案利用区块链技术在各方之间实现信息透明性,降低贸易成本和复杂性,旨在帮助企业减少欺诈和错误,缩短产品在运输和海运过程中所花的时间,改善库存管理,最终减少浪费并降低成本。马士基在 2014 年发现,仅仅是将冷冻货物从东非运到欧洲,就需要经过近 30 个人员和组织进行超过 200 次的沟通和交流,大量文书工作可以替换为无法篡改的数字记录,类似问题都有望借助区块链进行解决。基于区块链的供应链方案,预计每年可为全球航运业节省数十亿美元。国际物流区块链联盟2017 年 8 月,国际物流区块链联盟(Blockchain In Transport Alliance,BiTA)正式成立。该联盟目标为利用分布式账本技术来提高物流和货运效率,并探索新的行业标准。目前,联盟已经发展为超过 25 个国家,500 多家会员企业,包括联合包裹(UPS)、联邦快递(FedEx)、施耐德卡车运输公司(Schneider Trucking)、SAP 等。物联网曾经有人认为,物联网是大数据时代的基础。笔者认为,区块链技术是物联网时代的基础。典型应用场景分析一种可能的应用场景为:物联网络中每一个设备分配地址,给该地址所关联一个账户,用户通过向账户中支付费用可以租借设备,以执行相关动作,从而达到租借物联网的应用。典型的应用包括 PM2.5 监测点的数据获取、温度检测服务、服务器租赁、网络摄像头数据调用等等。另外,随着物联网设备的增多、边沿计算需求的增强,大量设备之间形成分布式自组织的管理模式,并且对容错性要求很高。区块链自身分布式和抗攻击的特点可以很好地融合到这一场景中。IBMIBM 在物联网领域已经持续投入了几十年的研发,目前正在探索使用区块链技术来降低物联网应用的成本。2015 年初,IBM 与三星宣布合作研发“去中心化的 P2P 自动遥测系统(Autonomous Decentralized Peer-to-Peer Telemetry)”系统,使用区块链作为物联网设备的共享账本,打造去中心化的物联网。Filament美国的 Filament 公司以区块链为基础提出了一套去中心化的物联网软件堆栈。通过创建一个智能设备目录,Filament 的物联网设备可以进行安全沟通、执行智能合约以及发送小额交易。基于上述技术,Filament 能够通过远程无线网络将辽阔范围内的工业基础设备沟通起来,其应用包括追踪自动售货机的存货和机器状态、检测铁轨的损耗、基于安全帽或救生衣的应急情况监测等。NeuroMesh2017 年 2 月,源自 MIT 的 NeuroMesh 物联网安全平台获得了 MIT 100K Accelerate 竞赛的亚军。该平台致力于成为“物联网疫苗”,能够检测和消除物联网中的有害程序,并将攻击源打入黑名单。所有运行 NeuroMesh 软件的物联网设备都通过访问区块链账本来识别其他节点和辨认潜在威胁。如果一个设备借助深度学习功能检测出可能的威胁,可通过发起投票的形式告知全网,由网络进一步对该威胁进行检测并做出处理。公共网络服务现有的互联网能正常运行,离不开很多近乎免费的网络服务,例如域名服务(DNS)。任何人都可以免费查询到域名,没有 DNS,现在的各种网站将无法访问。因此,对于网络系统来说,类似的基础服务必须要能做到安全可靠,并且低成本。区块链技术恰好具备这些特点,基于区块链打造的分布式 DNS 系统,将减少错误的记录和查询,并且可以更加稳定可靠地提供服务。其它场景区块链还有一些很有趣的应用场景,包括但不限于云存储、医疗、社交、游戏等多个方面。云存储Storj 项目提供了基于区块链的安全的分布式云存储服务。服务保证只有用户自己能看到自己的数据,并号称提供高速的下载速度和 99.99999% 的高可用性。用户还可以“出租”自己的额外硬盘空间来获得报酬。协议设计上,Storj 网络中的节点可以传递数据、验证远端数据的完整性和可用性、复原数据,以及商议合约和向其他节点付费。数据的安全性由数据分片(Data Sharding)和端到端加密提供,数据的完整性由可复原性证明(Proof of Retrievability)提供。医疗医院与医保医药公司,不同医院之间,甚至医院里不同部门之间的数据流动性往往很差。考虑到医疗健康数据的敏感性,笔者认为,如果能够满足数据访问权、使用权等规定的基础上促进医疗数据的提取和流动,健康大数据行业将迎来春天。目前,全球范围内的个人数据市场估值每年在 2000 亿美金左右。GemHealth 项目由区块链公司 Gem 于 2016 年 4 月提出,其目标除了用区块链存储医疗记录或数据,还包括借助区块链增强医疗健康数据在不同机构不同部门间的安全可转移性、促进全球病人身份识别、医疗设备数据安全收集与验证等。项目已与医疗行业多家公司签订了合作协议。Hu.Manity 是一家创业公司,提供健康数据的匿名出售服务。用户可以选择售卖个人健康数据,但这些数据会消除掉个人的隐私信息。麻省理工学院媒体实验室也在建立一个医疗数据的共享系统,允许病人自行选择分享哪些数据给医疗机构。通信和社交BitMessage 是一套去中心化通信系统,在点对点通信的基础上保护用户的匿名性和信息的隐私。BitMessage 协议在设计上充分参考了比特币,二者拥有相似的地址编码机制和消息传递机制。BitMessage 也用工作量证明(Proof-of-Work)机制防止通信网络受到大量垃圾信息的冲击。类似的,Twister 是一套去中心化的“微博”系统,Dot-Bit 是一套去中心化的 DNS 系统。投票Follow My Vote 项目致力于提供一个安全、透明的在线投票系统。通过使用该系统进行选举投票,投票者可以随时检查自己选票的存在和正确性,看到实时记票结果,并在改变主意时修改选票。该项目使用区块链进行记票,并开源其软件代码供社区用户审核。项目也为投票人身份认证、防止重复投票、投票隐私等难点问题提供了解决方案。在线音乐Ujo 音乐平台通过使用智能合约来创建一个透明的、去中心化的版权和版权所有者数据库来进行音乐版权税费的自动支付。预测Augur 是一个运行在以太坊上的预测市场平台。使用 Augur,来自全球不同地方的任何人都可发起自己的预测话题市场,或随意加入其它市场,来预测一些事件的发展结果。预测结果和奖金结算由智能合约严格控制,使得在平台上博弈的用户不用为安全性产生担忧。电子游戏2017 年 3 月,来自马来西亚的电子游戏工作室 Xhai Studios 宣布将区块链技术引入其电子游戏平台。工作室旗下的一些游戏将支持与 NEM 区块链的代币 XEM 整合。通过这一平台,游戏开发者可以在游戏架构中直接调用支付功能,消除对第三方支付的依赖;玩家则可以自由地将 XEM 和游戏内货币、点数等进行双向兑换。存证TODO:展开解释存证或版权案例 “纸贵版权” 引入公证处、版权局、知名高校作为版权存证联盟链的存证和监管节点,所有上链的版权存证信息都会经过多个节点的验证和监管,保证任何时刻均可出具具备国家承认的公证证明,具有最高司法效力。同时,通过在公证处部署联盟链存证节点服务器,存证主体即可视为公证处。在遭遇侵权行为时,区块链版权登记证书可作为证据证明版权归属,得到法院的采信。2018 年 12 月 22 日,北京互联网法院“天平链”正式发布。该区块链平台融合了司法鉴定中心、公证处、行业机构等,三个月时间内发展到 17 个节点,采集数据超过一百万条。这些存证数据有望提高电子诉讼的采证效率。发布于 2019-12-18 11:20区块链(Blockchain)区块链价值区块链技术赞同 454 条评论分享喜欢收藏申请转载文章被以下专栏收录区块链漫游指南区块
区块链技术研究综述:原理、进展与应用
区块链技术研究综述:原理、进展与应用
主管单位:中国科学技术协会
主办单位:中国通信学会
ISSN 1000-436X CN 11-2102/TN
首页
期刊简介
编委会
投稿指南
道德声明
期刊协议
期刊订阅
会议活动
下载中心
联系我们
English
期刊介绍
期刊信息
投稿须知
稿件格式要求
审稿流程
下载中心
联系方式
Toggle navigation
首页
期刊简介
期刊介绍
期刊信息
编委会
投稿指南
投稿须知
稿件格式要求
审稿流程
下载中心
道德声明
期刊协议
期刊订阅
会议活动
联系我们
English
通信学报, 2020, 41(1): 134-151 doi: 10.11959/j.issn.1000-436x.2020027
综述
区块链技术研究综述:原理、进展与应用
曾诗钦1, 霍如2,3, 黄韬1,3, 刘江1,3, 汪硕1,3, 冯伟4
1 北京邮电大学网络与交换国家重点实验室,北京 100876
2 北京工业大学北京未来网络科技高精尖创新中心,北京 100124
3 网络通信与安全紫金山实验室,江苏 南京 211111
4 工业和信息化部信息化和软件服务业司,北京 100846
Survey of blockchain:principle,progress and application
ZENG Shiqin1, HUO Ru2,3, HUANG Tao1,3, LIU Jiang1,3, WANG Shuo1,3, FENG Wei4
1 State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China
2 Beijing Advanced Innovation Center for Future Internet Technology,Beijing University of Technology,Beijing 100124,China
3 Purple Mountain Laboratories,Nanjing 211111,China
4 Department of Information Technology Application and Software Services,Beijing 100846,China
通讯作者: 霍如,huoru@bjut.edu.cn
修回日期: 2019-12-12
网络出版日期: 2020-01-25
基金资助:
国家高技术研究发展计划(“863”计划)基金资助项目. 2015AA015702未来网络操作系统发展战略研究基金资助项目. 2019-XY-5
Revised: 2019-12-12
Online: 2020-01-25
Fund supported:
The National High Technology Research and Development Program of China (863 Program). 2015AA015702The Development Strategy Research of Future Network Operating System. 2019-XY-5
作者简介 About authors
曾诗钦(1995-),男,广西南宁人,北京邮电大学博士生,主要研究方向为区块链、标识解析技术、工业互联网
。
霍如(1988-),女,黑龙江哈尔滨人,博士,北京工业大学讲师,主要研究方向为计算机网络、信息中心网络、网络缓存策略与算法、工业互联网、标识解析技术等。
。
黄韬(1980-),男,重庆人,博士,北京邮电大学教授,主要研究方向为未来网络体系架构、软件定义网络、网络虚拟化等。
。
刘江(1983-),男,河南郑州人,博士,北京邮电大学教授,主要研究方向为未来网络体系架构、软件定义网络、网络虚拟化、信息中心网络等。
。
汪硕(1991-),男,河南灵宝人,博士,北京邮电大学在站博士后,主要研究方向为数据中心网络、软件定义网络、网络流量调度等。
。
冯伟(1980-),男,河北邯郸人,博士,工业和信息化部副研究员,主要研究方向为工业互联网平台、数字孪生、信息化和工业化融合发展关键技术等
。
摘要
区块链是一种分布式账本技术,依靠智能合约等逻辑控制功能演变为完整的存储系统。其分类方式、服务模式和应用需求的变化导致核心技术形态的多样性发展。为了完整地认知区块链生态系统,设计了一个层次化的区块链技术体系结构,进一步深入剖析区块链每层结构的基本原理、技术关联以及研究进展,系统归纳典型区块链项目的技术选型和特点,最后给出智慧城市、工业互联网等区块链前沿应用方向,提出区块链技术挑战与研究展望。
关键词:
区块链
;
加密货币
;
去中心化
;
层次化技术体系结构
;
技术多样性
;
工业区块链
Abstract
Blockchain is a kind of distributed ledger technology that upgrades to a complete storage system by adding logic control functions such as intelligent contracts.With the changes of its classification,service mode and application requirements,the core technology forms of Blockchain show diversified development.In order to understand the Blockchain ecosystem thoroughly,a hierarchical technology architecture of Blockchain was proposed.Furthermore,each layer of blockchain was analyzed from the perspectives of basic principle,related technologies and research progress in-depth.Moreover,the technology selections and characteristics of typical Blockchain projects were summarized systematically.Finally,some application directions of blockchain frontiers,technology challenges and research prospects including Smart Cities and Industrial Internet were given.
Keywords:
blockchain
;
cryptocurrency
;
decentralization
;
hierarchical technology architecture
;
technology diversity
;
PDF (1174KB)
元数据
多维度评价
相关文章
导出
EndNote|
Ris|
Bibtex
收藏本文
本文引用格式
曾诗钦, 霍如, 黄韬, 刘江, 汪硕, 冯伟. 区块链技术研究综述:原理、进展与应用. 通信学报[J], 2020, 41(1): 134-151 doi:10.11959/j.issn.1000-436x.2020027
ZENG Shiqin. Survey of blockchain:principle,progress and application. Journal on Communications[J], 2020, 41(1): 134-151 doi:10.11959/j.issn.1000-436x.2020027
1 引言
2008年,中本聪提出了去中心化加密货币——比特币(bitcoin)的设计构想。2009年,比特币系统开始运行,标志着比特币的正式诞生。2010—2015 年,比特币逐渐进入大众视野。2016—2018年,随着各国陆续对比特币进行公开表态以及世界主流经济的不确定性增强,比特币的受关注程度激增,需求量迅速扩大。事实上,比特币是区块链技术最成功的应用场景之一。伴随着以太坊(ethereum)等开源区块链平台的诞生以及大量去中心化应用(DApp,decentralized application)的落地,区块链技术在更多的行业中得到了应用。
由于具备过程可信和去中心化两大特点,区块链能够在多利益主体参与的场景下以低成本的方式构建信任基础,旨在重塑社会信用体系。近两年来区块链发展迅速,人们开始尝试将其应用于金融、教育、医疗、物流等领域。但是,资源浪费、运行低效等问题制约着区块链的发展,这些因素造成区块链分类方式、服务模式和应用需求发生快速变化,进一步导致核心技术朝多样化方向发展,因此有必要采取通用的结构分析区块链项目的技术路线和特点,以梳理和明确区块链的研究方向。
区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值。袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势。上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析。本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望。
2 相关概念
随着区块链技术的深入研究,不断衍生出了很多相关的术语,例如“中心化”“去中心化”“公链”“联盟链”等。为了全面地了解区块链技术,并对区块链技术涉及的关键术语有系统的认知,本节将给出区块链及其相关概念的定义,以及它们的联系,更好地区分易使人混淆的术语。
2.1 中心化与去中心化
中心化(centralization)与去中心化(decentralization)最早用来描述社会治理权力的分布特征。从区块链应用角度出发,中心化是指以单个组织为枢纽构建信任关系的场景特点。例如,电子支付场景下用户必须通过银行的信息系统完成身份验证、信用审查和交易追溯等;电子商务场景下对端身份的验证必须依靠权威机构下发的数字证书完成。相反,去中心化是指不依靠单一组织进行信任构建的场景特点,该场景下每个组织的重要性基本相同。
2.2 加密货币
加密货币(cryptocurrency)是一类数字货币(digital currency)技术,它利用多种密码学方法处理货币数据,保证用户的匿名性、价值的有效性;利用可信设施发放和核对货币数据,保证货币数量的可控性、资产记录的可审核性,从而使货币数据成为具备流通属性的价值交换媒介,同时保护使用者的隐私。
加密货币的概念起源于一种基于盲签名(blind signature)的匿名交易技术[6],最早的加密货币交易模型“electronic cash”[7]如图1所示。
图1
新窗口打开|
下载原图ZIP|
生成PPT
图1
“electronic cash”交易模型
交易开始前,付款者使用银行账户兑换加密货币,然后将货币数据发送给领款者,领款者向银行发起核对请求,若该数据为银行签发的合法货币数据,那么银行将向领款者账户记入等额数值。通过盲签名技术,银行完成对货币数据的认证,而无法获得发放货币与接收货币之间的关联,从而保证了价值的有效性、用户的匿名性;银行天然具有发放币种、账户记录的能力,因此保证了货币数量的可控性与资产记录的可审核性。
最早的加密货币构想将银行作为构建信任的基础,呈现中心化特点。此后,加密货币朝着去中心化方向发展,并试图用工作量证明(PoW,poof of work)[8]或其改进方法定义价值。比特币在此基础上,采用新型分布式账本技术保证被所有节点维护的数据不可篡改,从而成功构建信任基础,成为真正意义上的去中心化加密货币。区块链从去中心化加密货币发展而来,随着区块链的进一步发展,去中心化加密货币已经成为区块链的主要应用之一。
2.3 区块链及工作流程
一般认为,区块链是一种融合多种现有技术的新型分布式计算和存储范式。它利用分布式共识算法生成和更新数据,并利用对等网络进行节点间的数据传输,结合密码学原理和时间戳等技术的分布式账本保证存储数据的不可篡改,利用自动化脚本代码或智能合约实现上层应用逻辑。如果说传统数据库实现数据的单方维护,那么区块链则实现多方维护相同数据,保证数据的安全性和业务的公平性。区块链的工作流程主要包含生成区块、共识验证、账本维护3个步骤。
1) 生成区块。区块链节点收集广播在网络中的交易——需要记录的数据条目,然后将这些交易打包成区块——具有特定结构的数据集。
2) 共识验证。节点将区块广播至网络中,全网节点接收大量区块后进行顺序的共识和内容的验证,形成账本——具有特定结构的区块集。
3) 账本维护。节点长期存储验证通过的账本数据并提供回溯检验等功能,为上层应用提供账本访问接口。
2.4 区块链类型
根据不同场景下的信任构建方式,可将区块链分为2类:非许可链(permissionless blockchain)和许可链(permissioned blockchain)。
非许可链也称为公链(public blockchain),是一种完全开放的区块链,即任何人都可以加入网络并参与完整的共识记账过程,彼此之间不需要信任。公链以消耗算力等方式建立全网节点的信任关系,具备完全去中心化特点的同时也带来资源浪费、效率低下等问题。公链多应用于比特币等去监管、匿名化、自由的加密货币场景。
许可链是一种半开放式的区块链,只有指定的成员可以加入网络,且每个成员的参与权各有不同。许可链往往通过颁发身份证书的方式事先建立信任关系,具备部分去中心化特点,相比于非许可链拥有更高的效率。进一步,许可链分为联盟链(consortium blockchain)和私链(fully private blockchain)。联盟链由多个机构组成的联盟构建,账本的生成、共识、维护分别由联盟指定的成员参与完成。在结合区块链与其他技术进行场景创新时,公链的完全开放与去中心化特性并非必需,其低效率更无法满足需求,因此联盟链在某些场景中成为实适用性更强的区块链选型。私链相较联盟链而言中心化程度更高,其数据的产生、共识、维护过程完全由单个组织掌握,被该组织指定的成员仅具有账本的读取权限。
3 区块链体系结构
根据区块链发展现状,本节将归纳区块链的通用层次技术结构、基本原理和研究进展。
现有项目的技术选型多数由比特币演变而来,所以区块链主要基于对等网络通信,拥有新型的基础数据结构,通过全网节点共识实现公共账本数据的统一。但是区块链也存在效率低、功耗大和可扩展性差等问题,因此人们进一步以共识算法、处理模型、交易模式创新为切入点进行技术方案改进,并在此基础上丰富了逻辑控制功能和区块链应用功能,使其成为一种新型计算模式。本文给出如图2 所示的区块链通用层次化技术结构,自下而上分别为网络层、数据层、共识层、控制层和应用层。其中,网络层是区块链信息交互的基础,承载节点间的共识过程和数据传输,主要包括建立在基础网络之上的对等网络及其安全机制;数据层包括区块链基本数据结构及其原理;共识层保证节点数据的一致性,封装各类共识算法和驱动节点共识行为的奖惩机制;控制层包括沙盒环境、自动化脚本、智能合约和权限管理等,提供区块链可编程特性,实现对区块数据、业务数据、组织结构的控制;应用层包括区块链的相关应用场景和实践案例,通过调用控制合约提供的接口进行数据交互,由于该层次不涉及区块链原理,因此在第 5节中单独介绍。
3.1 网络层
网络层关注区块链网络的基础通信方式——对等(P2P,peer-to-peer)网络。对等网络是区别于“客户端/服务器”服务模式的计算机通信与存储架构,网络中每个节点既是数据的提供者也是数据的使用者,节点间通过直接交换实现计算机资源与信息的共享,因此每个节点地位均等。区块链网络层由组网结构、通信机制、安全机制组成。其中组网结构描述节点间的路由和拓扑关系,通信机制用于实现节点间的信息交互,安全机制涵盖对端安全和传输安全。
图2
新窗口打开|
下载原图ZIP|
生成PPT
图2
区块链层次化技术结构
1) 组网结构
对等网络的体系架构可分为无结构对等网络、结构化对等网络和混合式对等网络[9],根据节点的逻辑拓扑关系,区块链网络的组网结构也可以划分为上述3种,如图3所示。
图3
新窗口打开|
下载原图ZIP|
生成PPT
图3
区块链组网结构
无结构对等网络是指网络中不存在特殊中继节点、节点路由表的生成无确定规律、网络拓扑呈现随机图状的一类对等网络。该类网络结构松散,设计简洁,具有良好的容错性和匿名性,但由于采用洪泛机制作为信息传播方式,其可扩展性较差。典型的协议有Gnutella等。
结构化对等网络是指网络中不存在特殊中继节点、节点间根据特定算法生成路由表、网络拓扑具有严格规律的一类对等网络。该类网络实现复杂但可扩展性良好,通过结构化寻址可以精确定位节点从而实现多样化功能。常见的结构化网络以DHT (distributed hash table)网络为主,典型的算法有Chord、Kademlia等。
混合式对等网络是指节点通过分布式中继节点实现全网消息路由的一类对等网络。每个中继节点维护部分网络节点地址、文件索引等工作,共同实现数据中继的功能。典型的协议有Kazza等。
2) 通信机制
通信机制是指区块链网络中各节点间的对等通信协议,建立在 TCP/UDP 之上,位于计算机网络协议栈的应用层,如图4所示。该机制承载对等网络的具体交互逻辑,例如节点握手、心跳检测、交易和区块传播等。由于包含的协议功能不同(例如基础链接与扩展交互),本文将通信机制细分为3个层次:传播层、连接层和交互逻辑层。
传播层实现对等节点间数据的基本传输,包括2 种数据传播方式:单点传播和多点传播。单点传播是指数据在2个已知节点间直接进行传输而不经过其他节点转发的传播方式;多点传播是指接收数据的节点通过广播向邻近节点进行数据转发的传播方式,区块链网络普遍基于Gossip协议[10]实现洪泛传播。连接层用于获取节点信息,监测和改变节点间连通状态,确保节点间链路的可用性(availability)。具体而言,连接层协议帮助新加入节点获取路由表数据,通过定时心跳监测为节点保持稳定连接,在邻居节点失效等情况下为节点关闭连接等。交互逻辑层是区块链网络的核心,从主要流程上看,该层协议承载对等节点间账本数据的同步、交易和区块数据的传输、数据校验结果的反馈等信息交互逻辑,除此之外,还为节点选举、共识算法实施等复杂操作和扩展应用提供消息通路。
图4
新窗口打开|
下载原图ZIP|
生成PPT
图4
区块链网络通信机制
3) 安全机制
安全是每个系统必须具备的要素,以比特币为代表的非许可链利用其数据层和共识层的机制,依靠消耗算力的方式保证数据的一致性和有效性,没有考虑数据传输过程的安全性,反而将其建立在不可信的透明P2P网络上。随着隐私保护需求的提出,非许可链也采用了一些网络匿名通信方法,例如匿名网络Tor(the onion router)通过沿路径的层层数据加密机制来保护对端身份。许可链对成员的可信程度有更高的要求,在网络层面采取适当的安全机制,主要包括身份安全和传输安全两方面。身份安全是许可链的主要安全需求,保证端到端的可信,一般采用数字签名技术实现,对节点的全生命周期(例如节点交互、投票、同步等)进行签名,从而实现许可链的准入许可。传输安全防止数据在传输过程中遭到篡改或监听,常采用基于TLS的点对点传输和基于Hash算法的数据验证技术。
4) 研究现状
目前,区块链网络层研究主要集中在3个方向:测量优化、匿名分析与隐私保护、安全防护。
随着近年来区块链网络的爆炸式发展以及开源特点,学术界开始关注大型公有链项目的网络状况,监测并研究它们的特点,研究对象主要为比特币网络。Decker等[11]设计和实现测量工具,分析传播时延数据、协议数据和地址数据,建模分析影响比特币网络性能的网络层因素,基于此提出各自的优化方法。Fadhil等[12]提出基于事件仿真的比特币网络仿真模型,利用真实测量数据验证模型的有效性,最后提出优化机制 BCBSN,旨在设立超级节点降低网络波动。Kaneko 等[13]将区块链节点分为共识节点和验证节点,其中共识节点采用无结构组网方式,验证节点采用结构化组网方式,利用不同组网方式的优点实现网络负载的均衡。
匿名性是加密货币的重要特性之一,但从网络层视角看,区块链的匿名性并不能有效保证,因为攻击者可以利用监听并追踪 IP 地址的方式推测出交易之间、交易与公钥地址之间的关系,通过匿名隐私研究可以主动发掘安全隐患,规避潜在危害。Koshy 等[16,17]从网络拓扑、传播层协议和作恶模型3个方面对比特币网络进行建模,通过理论分析和仿真实验证明了比特币网络协议在树形组网结构下仅具备弱匿名性,在此基础上提出 Dandelion 网络策略以较低的网络开销优化匿名性,随后又提出 Dandelion++原理,以最优信息理论保证来抵抗大规模去匿名攻击。
区块链重点关注其数据层和共识层面机制,并基于普通网络构建开放的互联环境,该方式极易遭受攻击。为提高区块链网络的安全性,学术界展开研究并给出了相应的解决方案。Heilman 等[18]对比特币和以太坊网络实施日蚀攻击(eclipse attack)——通过屏蔽正确节点从而完全控制特定节点的信息来源,证实了该攻击的可行性。Apostolaki等[19]提出针对比特币网络的 BGP(border gateway protocal)劫持攻击,通过操纵自治域间路由或拦截域间流量来制造节点通信阻塞,表明针对关键数据的沿路攻击可以大大降低区块传播性能。
3.2 数据层
区块链中的“块”和“链”都是用来描述其数据结构特征的词汇,可见数据层是区块链技术体系的核心。区块链数据层定义了各节点中数据的联系和组织方式,利用多种算法和机制保证数据的强关联性和验证的高效性,从而使区块链具备实用的数据防篡改特性。除此之外,区块链网络中每个节点存储完整数据的行为增加了信息泄露的风险,隐私保护便成为迫切需求,而数据层通过非对称加密等密码学原理实现了承载应用信息的匿名保护,促进区块链应用普及和生态构建。因此,从不同应用信息的承载方式出发,考虑数据关联性、验证高效性和信息匿名性需求,可将数据层关键技术分为信息模型、关联验证结构和加密机制3类。
1) 信息模型
区块链承载了不同应用的数据(例如支付记录、审计数据、供应链信息等),而信息模型则是指节点记录应用信息的逻辑结构,主要包括UTXO (unspent transaction output)、基于账户和键值对模型3种。需要说明的是,在大部分区块链网络中,每个用户均被分配了交易地址,该地址由一对公私钥生成,使用地址标识用户并通过数字签名的方式检验交易的有效性。
UTXO是比特币交易中的核心概念,逐渐演变为区块链在金融领域应用的主要信息模型,如图5所示。每笔交易(Tx)由输入数据(Input)和输出数据(Output)组成,输出数据为交易金额(Num)和用户公钥地址(Adr),而输入数据为上一笔交易输出数据的指针(Pointer),直到该比特币的初始交易由区块链网络向节点发放。
图5
新窗口打开|
下载原图ZIP|
生成PPT
图5
UTXO信息模型
基于账户的信息模型以键值对的形式存储数据,维护着账户当前的有效余额,通过执行交易来不断更新账户数据。相比于UTXO,基于账户的信息模型与银行的储蓄账户类似,更直观和高效。
不管是UTXO还是基于账户的信息模型,都建立在更为通用的键值对模型上,因此为了适应更广泛的应用场景,键值对模型可直接用于存储业务数据,表现为表单或集合形式。该模型利于数据的存取并支持更复杂的业务逻辑,但是也存在复杂度高的问题。
2) 关联验证结构
区块链之所以具备防篡改特性,得益于链状数据结构的强关联性。该结构确定了数据之间的绑定关系,当某个数据被篡改时,该关系将会遭到破坏。由于伪造这种关系的代价是极高的,相反检验该关系的工作量很小,因此篡改成功率被降至极低。链状结构的基本数据单位是“区块(block)”,基本内容如图6所示。
图6
新窗口打开|
下载原图ZIP|
生成PPT
图6
基本区块结构
区块由区块头(Header)和区块体(Body)两部分组成,区块体包含一定数量的交易集合;区块头通过前继散列(PrevHash)维持与上一区块的关联从而形成链状结构,通过MKT(MerkleTree)生成的根散列(RootHash)快速验证区块体交易集合的完整性。因此散列算法和 MKT 是关联验证结构的关键,以下将对此展开介绍。
散列(Hash)算法也称为散列函数,它实现了明文到密文的不可逆映射;同时,散列算法可以将任意长度的输入经过变化得到固定长度的输出;最后,即使元数据有细微差距,变化后的输出也会产生显著不同。利用散列算法的单向、定长和差异放大的特征,节点通过比对当前区块头的前继散列即可确定上一区块内容的正确性,使区块的链状结构得以维系。区块链中常用的散列算法包括SHA256等。
MKT包括根散列、散列分支和交易数据。MKT首先对交易进行散列运算,再对这些散列值进行分组散列,最后逐级递归直至根散列。MKT 带来诸多好处:一方面,对根散列的完整性确定即间接地实现交易的完整性确认,提升高效性;另一方面,根据交易的散列路径(例如 Tx1:Hash2、Hash34)可降低验证某交易存在性的复杂度,若交易总数为N,那么MKT可将复杂度由N降为lbN。除此之外,还有其他数据结构与其配合使用,例如以太坊通过MPT(Merkle Patricia tree)——PatriciaTrie 和MerkleTree混合结构,高效验证其基于账户的信息模型数据。
此外,区块头中还可根据不同项目需求灵活添加其他信息,例如添加时间戳为区块链加入时间维度,形成时序记录;添加记账节点标识,以维护成块节点的权益;添加交易数量,进一步提高区块体数据的安全性。
3) 加密机制
由上述加密货币原理可知,经比特币演变的区块链技术具备与生俱来的匿名性,通过非对称加密等技术既保证了用户的隐私又检验了用户身份。非对称加密技术是指加密者和解密者利用2个不同秘钥完成加解密,且秘钥之间不能相互推导的加密机制。常用的非对称加密算法包括 RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)等。对应图5,Alice 向 Bob 发起交易 Tx2,Alice使用Bob的公钥对交易签名,仅当Bob使用私钥验证该数字签名时,才有权利创建另一笔交易,使自身拥有的币生效。该机制将公钥作为基础标识用户,使用户身份不可读,一定程度上保护了隐私。
4) 研究现状
数据层面的研究方向集中在高效验证、匿名分析、隐私保护3个方面。
高效验证的学术问题源于验证数据结构(ADS,authenticated data structure),即利用特定数据结构快速验证数据的完整性,实际上 MKT 也是其中的一种。为了适应区块链数据的动态性(dynamical)并保持良好性能,学术界展开了研究。Reyzin等[20]基于AVL树形结构提出AVL+,并通过平衡验证路径、缺省堆栈交易集等机制,简化轻量级节点的区块头验证过程。Zhang等[21]提出GEM2-tree结构,并对其进行优化提出 GEM2כ-tree 结构,通过分解单树结构、动态调整节点计算速度、扩展数据索引等机制降低以太坊节点计算开销。
区块数据直接承载业务信息,因此区块数据的匿名关联性分析更为直接。Reid等[22]将区块数据建模为事务网络和用户网络,利用多交易数据的用户指向性分析成功降低网络复杂度。Meiklejohn等[23]利用启发式聚类方法分析交易数据的流动特性并对用户进行分组,通过与这些服务的互动来识别主要机构的比特币地址。Awan 等[24]使用优势集(dominant set)方法对区块链交易进行自动分类,从而提高分析准确率。
隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私。Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性。非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成。
3.3 共识层
区块链网络中每个节点必须维护完全相同的账本数据,然而各节点产生数据的时间不同、获取数据的来源未知,存在节点故意广播错误数据的可能性,这将导致女巫攻击[29]、双花攻击[30]等安全风险;除此之外,节点故障、网络拥塞带来的数据异常也无法预测。因此,如何在不可信的环境下实现账本数据的全网统一是共识层解决的关键问题。实际上,上述错误是拜占庭将军问题(the Byzantine generals problem)[31]在区块链中的具体表现,即拜占庭错误——相互独立的组件可以做出任意或恶意的行为,并可能与其他错误组件产生协作,此类错误在可信分布式计算领域被广泛研究。
状态机复制(state-machine replication)是解决分布式系统容错问题的常用理论。其基本思想为:任何计算都表示为状态机,通过接收消息来更改其状态。假设一组副本以相同的初始状态开始,并且能够就一组公共消息的顺序达成一致,那么它们可以独立进行状态的演化计算,从而正确维护各自副本之间的一致性。同样,区块链也使用状态机复制理论解决拜占庭容错问题,如果把每个节点的数据视为账本数据的副本,那么节点接收到的交易、区块即为引起副本状态变化的消息。状态机复制理论实现和维持副本的一致性主要包含2个要素:正确执行计算逻辑的确定性状态机和传播相同序列消息的共识协议。其中,共识协议是影响容错效果、吞吐量和复杂度的关键,不同安全性、可扩展性要求的系统需要的共识协议各有不同。学术界普遍根据通信模型和容错类型对共识协议进行区分[32],因此严格地说,区块链使用的共识协议需要解决的是部分同步(partial synchrony)模型[33]下的拜占庭容错问题。
区块链网络中主要包含PoX(poof of X)[34]、BFT(byzantine-fault tolerant)和 CFT(crash-fault tolerant)类基础共识协议。PoX 类协议是以 PoW (proof of work)为代表的基于奖惩机制驱动的新型共识协议,为了适应数据吞吐量、资源利用率和安全性的需求,人们又提出PoS(proof of stake)、PoST (proof of space-time)等改进协议。它们的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错。BFT类协议是指解决拜占庭容错问题的传统共识协议及其改良协议,包括PBFT、BFT-SMaRt、Tendermint等。CFT类协议用于实现崩溃容错,通过身份证明等手段规避节点作恶的情况,仅考虑节点或网络的崩溃(crash)故障,主要包括Raft、Paxos、Kafka等协议。
非许可链和许可链的开放程度和容错需求存在差异,共识层面技术在两者之间产生了较大区别。具体而言,非许可链完全开放,需要抵御严重的拜占庭风险,多采用PoX、BFT类协议并配合奖惩机制实现共识。许可链拥有准入机制,网络中节点身份可知,一定程度降低了拜占庭风险,因此可采用BFT类协议、CFT类协议构建相同的信任模型[35]。
限于篇幅原因,本节仅以 PoW、PBFT、Raft为切入进行3类协议的分析。
1) PoX类协议
PoW也称为Nakamoto协议,是比特币及其衍生项目使用的核心共识协议,如图7所示。
图7
新窗口打开|
下载原图ZIP|
生成PPT
图7
PoW协议示意
该协议在区块链头结构中加入随机数Nonce,并设计证明依据:为生成新区块,节点必须计算出合适的 Nonce 值,使新生成的区块头经过双重SHA256 运算后小于特定阈值。该协议的整体流程为:全网节点分别计算证明依据,成功求解的节点确定合法区块并广播,其余节点对合法区块头进行验证,若验证无误则与本地区块形成链状结构并转发,最终达到全网共识。PoW是随机性协议,任何节点都有可能求出依据,合法区块的不唯一将导致生成分支链,此时节点根据“最长链原则”选择一定时间内生成的最长链作为主链而抛弃其余分支链,从而使各节点数据最终收敛。
PoW协议采用随机性算力选举机制,实现拜占庭容错的关键在于记账权的争夺,目前寻找证明依据的方法只有暴力搜索,其速度完全取决于计算芯片的性能,因此当诚实节点数量过半,即“诚实算力”过半时,PoW便能使合法分支链保持最快的增长速度,也即保证主链一直是合法的。PoW是一种依靠饱和算力竞争纠正拜占庭错误的共识协议,关注区块产生、传播过程中的拜占庭容错,在保证防止双花攻击的同时也存在资源浪费、可扩展性差等问题。
2) BFT类协议
PBFT是 BFT经典共识协议,其主要流程如图8 所示。PBFT将节点分为主节点和副节点,其中主节点负责将交易打包成区块,副节点参与验证和转发,假设作恶节点数量为f。PBFT共识主要分为预准备、准备和接受3个阶段,主节点首先收集交易后排序并提出合法区块提案;其余节点先验证提案的合法性,然后根据区块内交易顺序依次执行并将结果摘要组播;各节点收到2f个与自身相同的摘要后便组播接受投票;当节点收到超过2f+1个投票时便存储区块及其产生的新状态[36]。
图8
新窗口打开|
下载原图ZIP|
生成PPT
图8
PBFT协议示意
PBFT 协议解决消息传播过程的拜占庭容错,由于算法复杂度为 O(n2)且存在确定性的主节点选举规则,PBFT 仅适用于节点数量少的小型许可链系统。
3) CFT类协议
Raft[37]是典型的崩溃容错共识协议,以可用性强著称。Raft将节点分为跟随节点、候选节点和领导节点,领导节点负责将交易打包成区块,追随节点响应领导节点的同步指令,候选节点完成领导节点的选举工作。当网络运行稳定时,只存在领导节点和追随节点,领导节点向追随节点推送区块数据从而实现同步。节点均设置生存时间决定角色变化周期,领导节点的心跳信息不断重置追随节点的生存时间,当领导节点发生崩溃时,追随节点自动转化为候选节点并进入选举流程,实现网络自恢复。
Raft协议实现崩溃容错的关键在于领导节点的自选举机制,部分许可链选择降低可信需求,将拜占庭容错转换为崩溃容错,从而提升共识速度。
4) 奖惩机制
奖惩机制包括激励机制与惩罚策略,其中激励机制是为了弥补节点算力消耗、平衡协议运行收益比的措施,当节点能够在共识过程中获得收益时才会进行记账权的争夺,因此激励机制利用经济效益驱动各共识协议可持续运行。激励机制一般基于价值均衡理论设计,具有代表性的机制包括PPLNS、PPS等。为了实现收益最大化,节点可能采用不诚实的运行策略(如扣块攻击、自私挖矿等),损害了诚实节点的利益,惩罚策略基于博弈论等理论对节点进行惩罚,从而纠正不端节点的行为,维护共识可持续性。
5) 研究现状
随着可扩展性和性能需求的多样化发展,除了传统的BFT、CFT协议和PoX协议衍生研究,还产生了混合型协议(Hybrid)——主要为 PoX类协议混合以及PoX-BFT协议混合。因此本节从PoX类、BFT类以及Hybrid类协议归纳共识层研究进展。
如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错。uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费。PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块。PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举。Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性。PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用。
BFT协议有较长的发展史,在区块链研究中被赋予了新的活力。SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识。Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性。HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致。LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能。
Hybrid 类协议是研究趋势之一。PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享。PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力。ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延。Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份。
3.4 控制层
区块链节点基于对等通信网络与基础数据结构进行区块交互,通过共识协议实现数据一致,从而形成了全网统一的账本。控制层是各类应用与账本产生交互的中枢,如果将账本比作数据库,那么控制层提供了数据库模型,以及相应封装、操作的方法。具体而言,控制层由处理模型、控制合约和执行环境组成。处理模型从区块链系统的角度分析和描述业务/交易处理方式的差异。控制合约将业务逻辑转化为交易、区块、账本的具体操作。执行环境为节点封装通用的运行资源,使区块链具备稳定的可移植性。
1) 处理模型
账本用于存储全部或部分业务数据,那么依据该数据的分布特征可将处理模型分为链上(on-chain)和链下(off-chain)2种。
链上模型是指业务数据完全存储在账本中,业务逻辑通过账本的直接存取实现数据交互。该模型的信任基础建立在强关联性的账本结构中,不仅实现防篡改而且简化了上层控制逻辑,但是过量的资源消耗与庞大的数据增长使系统的可扩展性达到瓶颈,因此该模型适用于数据量小、安全性强、去中心化和透明程度高的业务。
链下模型是指业务数据部分或完全存储在账本之外,只在账本中存储指针以及其他证明业务数据存在性、真实性和有效性的数据。该模型以“最小化信任成本”为准则,将信任基础建立在账本与链下数据的证明机制中,降低账本构建成本。由于与公开的账本解耦,该模型具有良好的隐私性和可拓展性,适用于去中心化程度低、隐私性强、吞吐量大的业务。
2) 控制合约
区块链中控制合约经历了2个发展阶段,首先是以比特币为代表的非图灵完备的自动化脚本,用于锁定和解锁基于UTXO信息模型的交易,与强关联账本共同克服了双花等问题,使交易数据具备流通价值。其次是以以太坊为代表的图灵完备的智能合约,智能合约是一种基于账本数据自动执行的数字化合同,由开发者根据需求预先定义,是上层应用将业务逻辑编译为节点和账本操作集合的关键。智能合约通过允许相互不信任的参与者在没有可信第三方的情况下就复杂合同的执行结果达成协议,使合约具备可编程性,实现业务逻辑的灵活定义并扩展区块链的使用。
3) 执行环境
执行环境是指执行控制合约所需要的条件,主要分为原生环境和沙盒环境。原生环境是指合约与节点系统紧耦合,经过源码编译后直接执行,该方式下合约能经历完善的静态分析,提高安全性。沙盒环境为节点运行提供必要的虚拟环境,包括网络通信、数据存储以及图灵完备的计算/控制环境等,在虚拟机中运行的合约更新方便、灵活性强,其产生的漏洞也可能造成损失。
4) 研究现状
控制层的研究方向主要集中在可扩展性优化与安全防护2个方面。
侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷。Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花。Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余。分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载。ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证。OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性。区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障。上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案。实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付。Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认。
一方面,沙盒环境承载了区块链节点运行条件,针对虚拟机展开的攻击更为直接;另一方面,智能合约直接对账本进行操作,其漏洞更易影响业务运行,因此控制层的安全防护研究成为热点。Luu等[59]分析了运行于EVM中的智能合约安全性,指出底层平台的分布式语义差异带来的安全问题。Brent 等[60]提出智能合约安全分析框架 Vandal,将EVM 字节码转换为语义逻辑关,为分析合约安全漏洞提供便利。Jiang 等[61]预先定义用于安全漏洞的特征,然后模拟执行大规模交易,通过分析日志中的合约行为实现漏洞检测。
4 技术选型分析
区别于其他技术,区块链发展过程中最显著的特点是与产业界紧密结合,伴随着加密货币和分布式应用的兴起,业界出现了许多区块链项目。这些项目是区块链技术的具体实现,既有相似之处又各具特点,本节将根据前文所述层次化结构对比特币、以太坊和超级账本Fabric项目进行分析,然后简要介绍其他代表性项目并归纳和对比各项目的技术选型及特点。
4.1 比特币
比特币是目前规模最大、影响范围最广的非许可链开源项目。图9为比特币项目以账本为核心的运行模式,也是所有非许可链项目的雏形。比特币网络为用户提供兑换和转账业务,该业务的价值流通媒介由账本确定的交易数据——比特币支撑。为了保持账本的稳定和数据的权威性,业务制定奖励机制,即账本为节点产生新的比特币或用户支付比特币,以此驱动节点共同维护账本。
图9
新窗口打开|
下载原图ZIP|
生成PPT
图9
比特币运行模式
比特币网络主要由2种节点构成:全节点和轻节点。全节点是功能完备的区块链节点,而轻节点不存储完整的账本数据,仅具备验证与转发功能。全节点也称为矿工节点,计算证明依据的过程被称为“挖矿”,目前全球拥有近 1 万个全节点;矿池则是依靠奖励分配策略将算力汇集起来的矿工群;除此之外,还有用于存储私钥和地址信息、发起交易的客户端(钱包)。
1) 网络层
比特币在网络层采用非结构化方式组网,路由表呈现随机性。节点间则采用多点传播方式传递数据,曾基于Gossip协议实现,为提高网络的抗匿名分析能力改为基于Diffusion协议实现[33]。节点利用一系列控制协议确保链路的可用性,包括版本获取(Vetsion/Verack)、地址获取(Addr/GetAddr)、心跳信息(PING/PONG)等。新节点入网时,首先向硬编码 DNS 节点(种子节点)请求初始节点列表;然后向初始节点随机请求它们路由表中的节点信息,以此生成自己的路由表;最后节点通过控制协议与这些节点建立连接,并根据信息交互的频率更新路由表中节点时间戳,从而保证路由表中的节点都是活动的。交互逻辑层为建立共识交互通道,提供了区块获取(GetBlock)、交易验证(MerkleBlock)、主链选择(CmpctBlock)等协议;轻节点只需要进行简单的区块头验证,因此通过头验证(GetHeader/Header)协议和连接层中的过滤设置协议指定需要验证的区块头即可建立简单验证通路。在安全机制方面,比特币网络可选择利用匿名通信网络Tor作为数据传输承载,通过沿路径的层层数据加密机制来保护对端身份。
2) 数据层
比特币数据层面的技术选型已经被广泛研究,使用UTXO信息模型记录交易数据,实现所有权的简单、有效证明,利用 MKT、散列函数和时间戳实现区块的高效验证并产生强关联性。在加密机制方面,比特币采用参数为Secp256k1的椭圆曲线数字签名算法(ECDSA,elliptic curve digital signature algorithm)生成用户的公私钥,钱包地址则由公钥经过双重散列、Base58Check 编码等步骤生成,提高了可读性。
3) 共识层
比特币采用 PoW 算法实现节点共识,该算法证明依据中的阈值设定可以改变计算难度。计算难度由每小时生成区块的平均块数决定,如果生成得太快,难度就会增加。该机制是为了应对硬件升级或关注提升引起的算力变化,保持证明依据始终有效。目前该阈值被设定为10 min产出一个区块。除此之外,比特币利用奖惩机制保证共识的可持续运行,主要包括转账手续费、挖矿奖励和矿池分配策略等。
4) 控制层
比特币最初采用链上处理模型,并将控制语句直接记录在交易中,使用自动化锁定/解锁脚本验证UTXO模型中的比特币所有权。由于可扩展性和确认时延的限制,比特币产生多个侧链项目如Liquid、RSK、Drivechain等,以及链下处理项目Lightning Network等,从而优化交易速度。
4.2 以太坊
以太坊是第一个以智能合约为基础的可编程非许可链开源平台项目,支持使用区块链网络构建分布式应用,包括金融、音乐、游戏等类型;当满足某些条件时,这些应用将触发智能合约与区块链网络产生交互,以此实现其网络和存储功能,更重要的是衍生出更多场景应用和价值产物,例如以太猫,利用唯一标识为虚拟猫赋予价值;GitCoin,众筹软件开发平台等。
1) 网络层
以太坊底层对等网络协议簇称为DEVP2P,除了满足区块链网络功能外,还满足与以太坊相关联的任何联网应用程序的需求。DEVP2P将节点公钥作为标识,采用 Kademlia 算法计算节点的异或距离,从而实现结构化组网。DEVP2P主要由3种协议组成:节点发现协议RLPx、基础通信协议Wire和扩展协议Wire-Sub。节点间基于Gossip实现多点传播;新节点加入时首先向硬编码引导节点(bootstrap node)发送入网请求;然后引导节点根据Kademlia 算法计算与新节点逻辑距离最近的节点列表并返回;最后新节点向列表中节点发出握手请求,包括网络版本号、节点ID、监听端口等,与这些节点建立连接后则使用Ping/Pong机制保持连接。Wire子协议构建了交易获取、区块同步、共识交互等逻辑通路,与比特币类似,以太坊也为轻量级钱包客户端设计了简易以太坊协议(LES,light ethereum subprotocol)及其变体PIP。安全方面,节点在RLPx协议建立连接的过程中采用椭圆曲线集成加密方案(ECIES)生成公私钥,用于传输共享对称密钥,之后节点通过共享密钥加密承载数据以实现数据传输保护。
2) 数据层
以太坊通过散列函数维持区块的关联性,采用MPT实现账户状态的高效验证。基于账户的信息模型记录了用户的余额及其他 ERC 标准信息,其账户类型主要分为2类:外部账户和合约账户;外部账户用于发起交易和创建合约,合约账户用于在合约执行过程中创建交易。用户公私钥的生成与比特币相同,但是公钥经过散列算法Keccak-256计算后取20 B作为外部账户地址。
3) 共识层
以太坊采用 PoW 共识,将阈值设定为 15 s产出一个区块,计划在未来采用PoS或Casper共识协议。较低的计算难度将导致频繁产生分支链,因此以太坊采用独有的奖惩机制——GHOST 协议,以提高矿工的共识积极性。具体而言,区块中的散列值被分为父块散列和叔块散列,父块散列指向前继区块,叔块散列则指向父块的前继。新区块产生时,GHOST 根据前 7 代区块的父/叔散列值计算矿工奖励,一定程度弥补了分支链被抛弃时浪费的算力。
4) 控制层
每个以太坊节点都拥有沙盒环境 EVM,用于执行Solidity语言编写的智能合约;Solidity语言是图灵完备的,允许用户方便地定义自己的业务逻辑,这也是众多分布式应用得以开发的前提。为优化可扩展性,以太坊拥有侧链项目 Loom、链下计算项目Plasma,而分片技术已于2018年加入以太坊源码。
4.3 超级账本Fabric
超级账本是Linux基金会旗下的开源区块链项目,旨在提供跨行业区块链解决方案。Fabric 是超级账本子项目之一,也是影响最广的企业级可编程许可链项目;在已知的解决方案中,Fabric 被应用于供应链、医疗和金融服务等多种场景。
1) 网络层
Fabric 网络以组织为单位构建节点集群,采用混合式对等网络组网;每个组织中包括普通节点和锚节点(anchor peer),普通节点完成组织内的消息路由,锚节点负责跨组织的节点发现与消息路由。Fabric网络传播层基于Gossip实现,需要使用配置文件初始化网络,网络生成后各节点将定期广播存活信息,其余节点根据该信息更新路由表以保持连接。交互逻辑层采用多通道机制,即相同通道内的节点才能进行状态信息交互和区块同步。Fabric 为许可链,因此在网络层采取严苛的安全机制:节点被颁发证书及密钥对,产生PKI-ID进行身份验证;可选用 TLS 双向加密通信;基于多通道的业务隔离;可定义策略指定通道内的某些节点对等传输私有数据。
2) 数据层
Fabric的区块中记录读写集(read-write set)描述交易执行时的读写过程。该读写集用于更新状态数据库,而状态数据库记录了键、版本和值组成的键值对,因此属于键值对信息模型。一方面,散列函数和 MerkleTree 被用作高效关联结构的实现技术;另一方面,节点还需根据键值验证状态数据库与读写集中的最新版本是否一致。许可链场景对匿名性的要求较低,但对业务数据的隐私性要求较高,因此Fabric 1.2版本开始提供私有数据集(PDC,private data collection)功能。
3) 共识层
Fabric在0.6版本前采用PBFT 共识协议,但是为了提高交易吞吐量,Fabric 1.0 选择降低安全性,将共识过程分解为排序和验证2种服务,排序服务采用CFT类协议Kafka、Raft(v1.4之后)完成,而验证服务进一步分解为读写集验证与多签名验证,最大程度提高了共识速度。由于Fabric针对许可链场景,参与方往往身份可知且具有相同的合作意图,因此规避了节点怠工与作恶的假设,不需要奖惩机制调节。
4) 控制层
Fabric 对于扩展性优化需求较少,主要得益于共识层的优化与许可链本身参与节点较少的前提,因此主要采用链上处理模型,方便业务数据的存取;而 PDC 中仅将私有数据散列值上链的方式则属于链下处理模型,智能合约可以在本地进行数据存取。Fabric 节点采用模块化设计,基于 Docker构建模块执行环境;智能合约在Fabric中被称为链码,使用GO、Javascript和Java语言编写,也是图灵完备的。
4.4 其他项目
除了上述3种区块链基础项目外,产业界还有许多具有代表性的项目,如表1所示。
5 区块链应用研究
区块链技术有助于降低金融机构间的审计成本,显著提高支付业务的处理速度及效率,可应用于跨境支付等金融场景。除此之外,区块链还应用于产权保护、信用体系建设、教育生态优化、食品安全监管、网络安全保障等非金融场景。
根据这些场景的应用方式以及区块链技术特点,可将区块链特性概括为如下几点。1) 去中心化。节点基于对等网络建立通信和信任背书,单一节点的破坏不会对全局产生影响。2) 不可篡改。账本由全体节点维护,群体协作的共识过程和强关联的数据结构保证节点数据一致且基本无法被篡改,进一步使数据可验证和追溯。3) 公开透明。除私有数据外,链上数据对每个节点公开,便于验证数据的存在性和真实性。4) 匿名性。多种隐私保护机制使用户身份得以隐匿,即便如此也能建立信任基础。5) 合约自治。预先定义的业务逻辑使节点可以基于高可信的账本数据实现自治,在人-人、人-机、机-机交互间自动化执行业务。
鉴于上述领域的应用在以往研究中均有详细描述,本文将主要介绍区块链在智慧城市、边缘计算和人工智能领域的前沿应用研究现状。
表1
表1
代表性区块链项目
技术选型CordaQuorumLibraBlockstackFilecoinZcash控制合约Kotlin,JavaGOMoveClarity非图灵完备非图灵完备非图灵完备执行环境JVMEVMMVM源码编译源码编译源码编译处理模型链上链上/链下(私有数据)链上链下(虚拟链)链下(IPFS)链上奖惩机制——Libra coinsStacks tokenFilecoinZcash/Turnstiles共识算法Notary 机制/RAFT,BFT-SMaRtQuorum-Chain,RAFTLibraBFTTunable Proofs,proof-of-burnPoRep,PoETPoW信息模型UTXO基于账户基于账户基于账户基于账户UTXO关联验证结构散列算法MKT散列算法MPT散列算法MKT散列算法Merklized Adaptive Radix Forest (MARF)散列算法MKT散列算法MKT加密机制Tear-offs机制、混合密钥基于EnclaveSHA3-256/EdDSA基于Gaia/Blockstack AuthSECP256K1/BLSzk-SNARK组网方式混合型结构化混合型无结构结构化/无结构无结构通信机制AMQP1.0/单点传播Wire/GossipNoise-ProtocolFramework/GossipAtlas/GossipLibp2p/GossipBitcoin-Core/Gossip安全机制Corda加密套件/TLS证书/HTTPSDiffie-HellmanSecure BackboneTLSTor区块链类型许可链许可链许可链非许可链非许可链非许可链特点只允许对实际参与给定交易的各方进行信息访问和验证功能基于以太坊网络提供公共交易和私有交易2种交互渠道稳定、快速的交易网络剔除中心服务商的、可扩展的分布式数据存储设施,旨在保护隐私数据激励机制驱动的存储资源共享生态基于比特币网络提供零知识证明的隐私保护应用场景金融业务平台分布式应用加密货币互联网基础设施文件存储与共享加密货币
新窗口打开|
下载CSV
5.1 智慧城市
智慧城市是指利用 ICT 优化公共资源利用效果、提高居民生活质量、丰富设施信息化能力的研究领域,该领域包括个人信息管理、智慧医疗、智慧交通、供应链管理等具体场景。智慧城市强调居民、设施等各类数据的采集、分析与使能,数据可靠性、管理透明化、共享可激励等需求为智慧城市带来了许多技术挑战。区块链去中心化的交互方式避免了单点故障、提升管理公平性,公开透明的账本保证数据可靠及可追溯性,多种匿名机制利于居民隐私的保护,因此区块链有利于问题的解决。Hashemi等[62]将区块链用于权限数据存储,构建去中心化的个人数据接入控制模型;Bao等[63]利用区块链高效认证和管理用户标识,保护车主的身份、位置、车辆信息等个人数据。
5.2 边缘计算
边缘计算是一种将计算、存储、网络资源从云平台迁移到网络边缘的分布式信息服务架构,试图将传统移动通信网、互联网和物联网等业务进行深度融合,减少业务交付的端到端时延,提升用户体验。安全问题是边缘计算面临的一大技术挑战,一方面,边缘计算的层次结构中利用大量异构终端设备提供用户服务,这些设备可能产生恶意行为;另一方面,服务迁移过程中的数据完整性和真实性需要得到保障。区块链在这种复杂的工作环境和开放的服务架构中能起到较大作用。首先,区块链能够在边缘计算底层松散的设备网络中构建不可篡改的账本,提供设备身份和服务数据验证的依据。其次,设备能在智能合约的帮助下实现高度自治,为边缘计算提供设备可信互操作基础。Samaniego等[64]提出了一种基于区块链的虚拟物联网资源迁移架构,通过区块链共享资源数据从而保障安全性。Stanciu[65]结合软件定义网络(SDN)、雾计算和区块链技术提出分布式安全云架构,解决雾节点中SDN控制器流表策略的安全分发问题。Ziegler等[66]基于 Plasma 框架提出雾计算场景下的区块链可扩展应用方案,提升雾计算网关的安全性。
5.3 人工智能
人工智能是一类智能代理的研究,使机器感知环境/信息,然后进行正确的行为决策,正确是指达成人类预定的某些目标。人工智能的关键在于算法,而大部分机器学习和深度学习算法建立于体积庞大的数据集和中心化的训练模型之上,该方式易受攻击或恶意操作使数据遭到篡改,其后果为模型的不可信与算力的浪费。此外,数据采集过程中无法确保下游设备的安全性,无法保证数据来源的真实性与完整性,其后果将在自动驾驶等场景中被放大。区块链不可篡改的特性可以实现感知和训练过程的可信。另外,去中心化和合约自治特性为人工智能训练工作的分解和下放奠定了基础,保障安全的基础上提高计算效率。Kim等[67]利用区块链验证联合学习框架下的分发模型的完整性,并根据计算成本提供相应的激励,优化整体学习效果。Bravo-Marquez 等[68]提出共识机制“学习证明”以减轻PoX类共识的计算浪费,构建公共可验证的学习模型和实验数据库。
6 技术挑战与研究展望
6.1 层次优化与深度融合
区块链存在“三元悖论”——安全性、扩展性和去中心化三者不可兼得,只能依靠牺牲一方的效果来满足另外两方的需求。以比特币为代表的公链具有较高的安全性和完全去中心化的特点,但是资源浪费等问题成为拓展性优化的瓶颈。尽管先后出现了PoS、BFT等共识协议优化方案,或侧链、分片等链上处理模型,或Plasma、闪电网络等链下扩展方案,皆是以部分安全性或去中心化为代价的。因此,如何将区块链更好地推向实际应用很大程度取决于三元悖论的解决,其中主要有2种思路。
1) 层次优化
区块链层次化结构中每层都不同程度地影响上述3种特性,例如网络时延、并行读写效率、共识速度和效果、链上/链下模型交互机制的安全性等,对区块链的优化应当从整体考虑,而不是单一层次。
网络层主要缺陷在于安全性,可拓展性则有待优化。如何防御以 BGP 劫持为代表的网络攻击将成为区块链底层网络的安全研究方向[19]。信息中心网络将重塑区块链基础传输网络,通过请求聚合和数据缓存减少网内冗余流量并加速通信传输[69]。相比于数据层和共识层,区块链网络的关注度较低,但却是影响安全性、可拓展性的基本因素。
数据层的优化空间在于高效性,主要为设计新的数据验证结构与算法。该方向可以借鉴计算机研究领域的多种数据结构理论与复杂度优化方法,寻找适合区块链计算方式的结构,甚至设计新的数据关联结构。实际上相当一部分项目借鉴链式结构的思想开辟新的道路,例如压缩区块空间的隔离见证、有向无环图(DAG)中并行关联的纠缠结构(Tangle),或者Libra项目采用的状态树。
共识机制是目前研究的热点,也是同时影响三元特性的最难均衡的层次。PoW牺牲可拓展性获得完全去中心化和安全性,PoS高效的出块方式具备可扩展性但产生了分叉问题,POA结合两者做到了3种特性的均衡。以此为切入的Hybrid类共识配合奖惩机制的机动调节取得了较好效果,成为共识研究的过渡手段,但是如何做到三元悖论的真正突破还有待研究。
控制层面是目前可扩展性研究的热点,其优势在于不需要改变底层的基础实现,能够在短期内应用,集中在产业界的区块链项目中。侧链具有较好的灵活性但操作复杂度高,分片改进了账本结构但跨分片交互的安全问题始终存在,而链下处理模型在安全方面缺少理论分析的支撑。因此,三元悖论的解决在控制层面具有广泛的研究前景。
2) 深度融合
如果将层次优化称为横向优化,那么深度融合即为根据场景需求而进行的纵向优化。一方面,不同场景的三元需求并不相同,例如接入控制不要求完全去中心化,可扩展性也未遇到瓶颈,因此可采用BFT类算法在小范围构建联盟链。另一方面,区块链应用研究从简单的数据上链转变为链下存储、链上验证,共识算法从 PoW 转变为场景结合的服务证明和学习证明,此外,结合 5G 和边缘计算可将网络和计算功能移至网络边缘,节约终端资源。这意味着在严格的场景建模下,区块链的层次技术选型将与场景特点交叉创新、深度融合,具有较为广阔的研究前景。
6.2 隐私保护
加密货币以匿名性著称,但是区块链以非对称加密为基础的匿名体系不断受到挑战。反匿名攻击从身份的解密转变为行为的聚类分析,不仅包括网络流量的IP聚类,还包括交易数据的地址聚类、交易行为的启发式模型学习,因此大数据分析技术的发展使区块链隐私保护思路发生转变。已有Tor网络、混币技术、零知识证明、同态加密以及各类复杂度更高的非对称加密算法被提出,但是各方法仍有局限,未来将需要更为高效的方法。此外,随着区块链系统的可编程化发展,内部复杂性将越来越高,特别是智能合约需要更严格、有效的代码检测方法,例如匿名性检测、隐私威胁预警等。
6.3 工业区块链
工业区块链是指利用区块链夯实工业互联网中数据的流通和管控基础、促进价值转换的应用场景,具有较大的研究前景。
工业互联网是面向制造业数字化、网络化、智能化需求,构建基于海量数据采集、汇聚、分析的服务体系,支撑制造资源泛在连接、弹性供给、高效配置的重要基础设施。“工业互联网平台”是工业互联网的核心,通过全面感知、实时分析、科学决策、精准执行的逻辑闭环,实现工业全要素、全产业链、全价值链的全面贯通,培育新的模式和业态。
可以看到,工业互联网与物联网、智慧城市、消费互联网等场景应用存在内在关联,例如泛在连接、数据共享和分析、电子商务等,那么其学术问题与技术实现必然存在关联性。区块链解决了物联网中心管控架构的单点故障问题,克服泛在感知设备数据的安全性和隐私性挑战,为智慧城市场景的数据共享、接入控制等问题提供解决方法,为激励资源共享构建了新型互联网价值生态。尽管工业互联网作为新型的产业生态系统,其技术体系更复杂、内涵更丰富,但是不难想象,区块链同样有利于工业互联网的发展。
“平台+区块链”能够通过分布式数据管理模式,降低数据存储、处理、使用的管理成本,为工业用户在工业 APP 选择和使用方面搭建起更加可信的环境,实现身份认证及操作行为追溯、数据安全存储与可靠传递。能够通过产品设计参数、质量检测结果、订单信息等数据“上链”,实现有效的供应链全要素追溯与协同服务。能够促进平台间数据交易与业务协同,实现跨平台交易结算,带动平台间的数据共享与知识复用,促进工业互联网平台间互联互通。
当然,工业是关乎国计民生的产业,将区块链去中心化、匿名化等特性直接用于工业互联网是不可取的,因此需要研究工业区块链管理框架,实现区块链的可管可控,在一定范围内发挥其安全优势,并对工业互联网的运转提供正向激励。
7 结束语
区块链基于多类技术研究的成果,以低成本解决了多组织参与的复杂生产环境中的信任构建和隐私保护等问题,在金融、教育、娱乐、版权保护等场景得到了较多应用,成为学术界的研究热点。比特币的出现重塑了人们对价值的定义,伴随着产业界的呼声,区块链技术得到了快速发展,而遵循区块链层次化分析方法,能够直观地区别各项目的技术路线和特点,为优化区块链技术提供不同观察视角,并为场景应用的深度融合创造条件,促进后续研究。未来的发展中,区块链将成为更为基础的信任支撑技术,在产业互联网等更广阔的领域健康、有序地发展。
The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。
参考文献
View Option
原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[1]
袁勇, 王飞跃 . 区块链技术发展现状与展望[J]. 自动化学报, 2016,42(4): 481-494.
[本文引用: 1]
YUAN Y , WANG F Y . Blockchain:the state of the art and future trends[J]. Acta Automatica Sinica, 2016,42(4): 481-494.
[本文引用: 1]
[2]
邵奇峰, 张召, 朱燕超 ,等. 企业级区块链技术综述[J]. 软件学报, 2019,30(9): 2571-2592.
[本文引用: 1]
SHAO Q F , ZHANG Z , ZHU Y C ,et al. Survey of enterprise blockchains[J]. 2019,30(9): 2571-2592.
[本文引用: 1]
[3]
YANG W , AGHASIAN E , GARG S ,et al. A survey on blockchain-based internet service architecture:requirements,challenges,trends,and future[J]. IEEE Access, 2019,7: 75845-75872.
[本文引用: 1]
[4]
韩璇, 袁勇, 王飞跃 . 区块链安全问题:研究现状与展望[J]. 自动化学报, 2019,45(1): 208-227.
[本文引用: 1]
HAN X , YUAN Y , WANG F Y . Security problems on blockchain:the state of the art and future trends[J]. Acta Automatica Sinica, 2016,45(1): 208-227.
[本文引用: 1]
[5]
ALI M , VECCHIO M , PINCHEIRA M ,et al. Applications of blockchains in the Internet of things:a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2019,21: 1676-1717.
[本文引用: 1]
[6]
CHAUM D . Blind signature system[M]. Advances in Cryptology: Proceedings of Crypto 83.Springer USPress, 1984.
[本文引用: 1]
[7]
LAW L , SABEET S , SOLINAS J . How to make a mint:the cryptography of anonymous electronic cash[J]. The American University Law Review, 1997,46: 1131-1162.
[本文引用: 1]
[8]
JAKOBSSON M , JUELS A . Proofs of work and bread pudding protocols[C]// IFIP TC6/TC11 Joint Working Conference on Communications and Multimedia Security. IFIP, 1999: 258-272.
[本文引用: 1]
[9]
王学龙, 张璟 . P2P 关键技术研究综述[J]. 计算机应用研究, 2010,27(3): 801-805.
[本文引用: 1]
WANG X L , ZHANG J . Survey on peer-to-peer key technologies[J]. Application Research of Computers, 2010,27(3): 801-805.
[本文引用: 1]
[10]
DEMERS A , GREENE D , HOUSER C ,et al. Epidemic algorithms for replicated database maintenance[J]. ACM SIGOPS Operating Systems Review, 1988,22: 8-32.
[本文引用: 1]
[11]
DECKER C , WATTENHOFER R . Information propagation in the bitcoin network[C]// IEEE Thirteenth International Conference on Peer-to-peer Computing. IEEE, 2013: 1-10.
[本文引用: 1]
[12]
FADHIL M , OWENSON G , ADDA M . Locality based approach to improve propagation delay on the bitcoin peer-to-peer network[C]// 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). IEEE, 2017: 556-559.
[本文引用: 1]
[13]
KANEKO Y , ASAKA T . DHT clustering for load balancing considering blockchain data size[C]// 2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW). IEEE Computer Society, 2018: 71-74.
[本文引用: 1]
[14]
KOSHY P , KOSHY D , MCDANIEL P . An analysis of anonymity in bitcoin using P2P network traffic[C]// Financial Cryptography and Data Security:18th International Conference. Springer, 2014: 469-485.
[15]
BIRYUKOV A , KHOVRATOVICH D , PUSTOGAROV I . Deanonymisation of clients in bitcoin P2P network[C]// ACM SIGSAC Conference on Computer and Communications Security. ACM, 2014: 15-29.
[16]
VENKATAKRISHNAN S B , FANTI G , VISWANATH P . Dandelion:redesigning the bitcoin network for anonymity[C]// The 2017 ACM SIGMETRICS. ACM, 2017:57.
[本文引用: 1]
[17]
FANTI G , VENKATAKRISHNAN S B , BAKSHI S ,et al. Dandelion++:lightweight cryptocurrency networking with formal anonymity guarantees[J]. ACM SIGMETRICS Performance Evaluation Review, 2018,46: 5-7.
[本文引用: 1]
[18]
HEILMAN E , KENDLER A , ZOHAR A ,et al. Eclipse attacks on Bitcoin’s peer-to-peer network[C]// USENIX Conference on Security Symposium. USENIX Association, 2015: 129-144.
[本文引用: 1]
[19]
APOSTOLAKI M , ZOHAR A , VANBEVER L . Hijacking bitcoin:routing attacks on cryptocurrencies[C]// 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017: 375-392.
[本文引用: 2]
[20]
REYZIN L , IVANOV S . Improving authenticated dynamic dictionaries,with applications to cryptocurrencies[C]// International Conference on Financial Cryptography & Data Security. Springer, 2017: 376-392.
[本文引用: 1]
[21]
ZHANG C , XU C , XU J L ,et al. GEM^2-tree:a gas-efficient structure for authenticated range queries in blockchain[C]// IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 2019: 842-853.
[本文引用: 1]
[22]
REID F , HARRIGAN M . An analysis of anonymity in the bitcoin system[C]// 2011 IEEE Third International Conference on Privacy,Security,Risk and Trust. IEEE, 2011: 1318-1326.
[本文引用: 1]
[23]
MEIKLEJOHN S , POMAROLE M , JORDAN G ,et al. A fistful of bitcoins:characterizing payments among men with no names[C]// The 2013 Conference on Internet Measurement Conference. ACM, 2013: 127-140.
[本文引用: 1]
[24]
AWAN M K , CORTESI A . Blockchain transaction analysis using dominant sets[C]// IFIP International Conference on Computer Information Systems and Industrial Management. IFIP, 2017: 229-239.
[本文引用: 1]
[25]
SAXENA A , MISRA J , DHAR A . Increasing anonymity in bitcoin[C]// International Conference on Financial Cryptography and Data Security. Springer, 2014: 122-139.
[本文引用: 1]
[26]
MIERS I , GARMAN C , GREEN M ,et al. Zerocoin:anonymous distributed e-cash from bitcoin[C]// 2013 IEEE Symposium on Security and Privacy. IEEE, 2013: 397-411.
[本文引用: 1]
[27]
SASSON E B , CHIESA A , GARMAN C ,et al. Zerocash:decentralized anonymous payments from bitcoin[C]// 2014 IEEE Symposium on Security and Privacy (SP). IEEE, 2014: 459-474.
[本文引用: 1]
[28]
YIN W , WEN Q , LI W ,et al. A anti-quantum transaction authentication approach in blockchain[J]. IEEE Access, 2018,6: 5393-5401.
[本文引用: 1]
[29]
DOUCEUR J R , . The sybil attack[C]// The First International Workshop on Peer-to-Peer Systems(IPTPS’ 01). Springer, 2002: 251-260.
[本文引用: 1]
[30]
KARAME G O , ANDROULAKI E , CAPKUN S . Double-spending fast payments in bitcoin[C]// The 2012 ACM conference on Computer and communications security. ACM, 2012: 906-917.
[本文引用: 1]
[31]
LAMPORT L , SHOSTAK R , PEASE M . The byzantine generals problem[J]. ACM Transactions on Programming Languages and Systems, 1982,4: 382-401.
[本文引用: 1]
[32]
BANO S , SONNINO A , AL-BASSAM M ,et al. Consensus in the age of blockchains[J]..03936,2017. arXiv Preprint,arXiv:1711.03936,2017.
[本文引用: 1]
[33]
DWORK C , LYNCH N , STOCKMEYER L . Consensus in the presence of partial synchrony[J]. Journal of the ACM, 1988,35: 288-323.
[本文引用: 2]
[34]
TSCHORSCH F , SCHEUERMANN B . Bitcoin and beyond:a technical survey on decentralized digital currencies[J]. IEEE Communications Surveys & Tutorials, 2016,18: 2084-2123.
[本文引用: 1]
[35]
CACHIN C VUKOLIĆ M . Blockchains consensus protocols in the wild[J]. arXiv Preprint,arXiv:1707.01873, 2017.
[本文引用: 1]
[36]
CASTRO M , LISKOV B . Practical byzantine fault tolerance and proactive recovery[J]. ACM Transactions on Computer Systems, 2002,20: 398-461.
[本文引用: 1]
[37]
ONGARO D , OUSTERHOUT J . In search of an understandable consensus algorithm[C]// The 2014 USENIX Conference on USENIX Annual Technical Conference. USENIX Association, 2015: 305-320.
[本文引用: 1]
[38]
BALL M , ROSEN A , SABIN M ,et al. Proofs of useful work[R]. Cryptology ePrint Archive:Report 2017/203.
[本文引用: 1]
[39]
MIHALJEVIC B , ZAGAR M . Comparative analysis of blockchain consensus algorithms[C]// International Convention on Information and Communication Technology,Electronics and Microelectronics (MIPRO). IEEE, 2018: 1545-1550.
[本文引用: 1]
[40]
KIAYIAS A , RUSSELL A , DAVID B ,et al. Ouroboros:a provably secure proof-of-stake blockchain protocol[C]// Advances in Cryptology - CRYPTO 2017. Springer, 2017: 357-388.
[本文引用: 1]
[41]
FISCH B . Tight proofs of space and replication[J].,ePrint-2018-702. IACR Cryptology ePrint Archive,ePrint-2018-702.
[本文引用: 1]
[42]
BELOTTI M , BOŽIĆ N , PUJOLLE G ,et al. A vademecum on blockchain technologies:when,which,and how[J]. IEEE Communications Surveys & Tutorials, 2019,21: 3796-3838.
[本文引用: 1]
[43]
WANG W B , HOANG D T , HU P Z ,et al. A survey on consensus mechanisms and mining strategy management in blockchain networks[J]. IEEE Access, 2019,7: 22328-22370.
[本文引用: 1]
[44]
YOO J H , JUNG Y L , SHIN D H ,et al. Formal modeling and verification of a federated byzantine agreement algorithm for blockchain platforms[C]// IEEE International Workshop on Blockchain Oriented Software Engineering. 2019: 11-21.
[本文引用: 1]
[45]
ZHENG Z B , XIE S , DAI H ,et al. An overview of blockchain technology:architecture,consensus,and future trends[C]// 6th IEEE International Congress on Big Data. IEEE, 2017: 557-564.
[本文引用: 1]
[46]
YIN M , MALKHI D , REITER M K ,et al. HotStuff:BFT consensus in the lens of blockchain[C]// ACM Symposium on Principles of Distributed Computing. ACM, 2019: 347-356.
[本文引用: 1]
[47]
ALI S , WANG G , WHITE B ,et al. Libra critique towards global decentralized financial system[C]// Communications in Computer and Information Science. Springer, 2019: 661-672.
[本文引用: 1]
[48]
BENTOV I , LEE C , MIZRAHI A ,et al. Proof of activity:extending bitcoin’s proof of work via proof of stake[J]. IACR Cryptology ePrint Archive,ePrint-2014-25478.
[本文引用: 1]
[49]
DECKER C , SEIDEL J , WATTENHOFER R . Bitcoin meets strong consistency[J].,2014. arXiv Preprint,arXiv:1412.7935,2014.
[本文引用: 1]
[50]
KOKORIS-KOGIAS E , JOVANOVIC P , GAILLY N ,et al. Enhancing bitcoin security and performance with strong consistency via collective signing[J]. Applied Mathematical Modelling, 2016,37: 5723-5742.
[本文引用: 1]
[51]
BUTERIN V , GRIFFITH V . Casper the friendly finality gadget[J]. arXiv Preprint,arXiv:1710.09437,2017.
[本文引用: 1]
[52]
TSCHORSCH F , SCHEUERMANN B . Bitcoin and beyond:a technical survey on decentralized digital currencies[J]. IEEE Communications Surveys & Tutorials, 2016,18: 2084-2023,2017.
[本文引用: 1]
[53]
KIAYIAS A , MILLER A , ZINDROS D . Non-interactive proofs of proof-of-work[J]. IACR Cryptology ePrint Archive,ePrint-2017-963.
[本文引用: 1]
[54]
LUU L , NARAYANAN V , ZHENG C ,et al. A secure sharding protocol for open blockchains[C]// The 2016 ACM SIGSAC Conference on Computer and Communications Security(CCS’16). ACM, 2016: 17-30.
[本文引用: 1]
[55]
KOKORIS-KOGIAS E , JOVANOVIC P , GASSER L ,et al. OmniLedger:a secure,scale-out,decentralized ledger via sharding[C]// IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, 2018: 583-598.
[本文引用: 1]
[56]
LI S , YU M , AVESTIMEHR S ,et al. PolyShard:coded sharding achieves linearly scaling efficiency and security simultaneously[J]. arXiv Preprint,arXiv:1809.10361,2018.
[本文引用: 1]
[57]
XIE J F , YU F R , HUANG T ,et al. A survey on the scalability of blockchain systems[J]. IEEE Network, 2019,33: 166-173.
[本文引用: 1]
[58]
BURCHERT C , DECKER C , WATTENHOFER R . Scalable funding of bitcoin micropayment channel networks[C]// Stabilization,Safety,and Security of Distributed Systems. Springer, 2017: 361-377.
[本文引用: 1]
[59]
LUU L , CHU D , OLICKEL H ,et al. Making smart contracts smarter[C]// The 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016: 254-269.
[本文引用: 1]
[60]
BRENT L , JURISEVIC A , KONG M ,et al. Vandal:a scalable security analysis framework for smart contracts[J]. arXiv Preprint,arXiv:1809.039812018.
[本文引用: 1]
[61]
JIANG B , LIU Y , CHAN W K . ContractFuzzer:fuzzing smart contracts for vulnerability detection[J]. arXiv Preprint,arXiv:1807.03932,2018.
[本文引用: 1]
[62]
HASHEMI S H , FAGHRI F , CAMPBELL R H . Decentralized user-centric access control using pubsub over blockchain[J]. arXiv Preprint,arXiv:1710.00110,2017.
[本文引用: 1]
[63]
BAO S.CAO Y , LEI A ,et al. Pseudonym management through blockchain:cost-efficient privacy preservation on intelligent transportation systems[J]. IEEE Access, 2019,7: 80390-80403.
[本文引用: 1]
[64]
SAMANIEGO M , DETERS R . Hosting virtual IoT resources on edge-hosts with blockchain[C]// IEEE International Conference on Computer & Information Technology. IEEE, 2016: 116-119.
[本文引用: 1]
[65]
STANCIU A , . Blockchain based distributed control system for edge computing[C]// International Conference on Control Systems &Computer Science. IEEE, 2017: 667-671.
[本文引用: 1]
[66]
ZIEGLER M H , GROMANN M , KRIEGER U R . Integration of fog computing and blockchain technology using the plasma framework[C]// 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE, 2019: 120-123.
[本文引用: 1]
[67]
KIM H , PARK J , BENNIS M ,et al. Blockchained on-device federated learning[J]. arXiv Preprint,arXiv:1808.03949, 2018.
[本文引用: 1]
[68]
BRAVO-MARQUEZ F , REEVES S , UGARTE M . Proof-of- learning:a blockchain consensus mechanism based on machine learning competitions[C]// 2019 IEEE International Conference on Decentralized Applications and Infrastructures. IEEE, 2019: 119-124.
[本文引用: 1]
[69]
刘江, 霍如, 李诚成 ,等. 基于命名数据网络的区块链信息传输机制[J]. 通信学报, 2018,39(1), 24-33.
[本文引用: 1]
LIU J , HUO R , LI C C ,et al. Information transmission mechanism of Blockchain technology based on named-data networking[J]. Journal on Communications, 2018,39(1): 24-33.
[本文引用: 1]
区块链技术发展现状与展望
1
2016
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
区块链技术发展现状与展望
1
2016
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
企业级区块链技术综述
1
2019
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
企业级区块链技术综述
1
2019
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
A survey on blockchain-based internet service architecture:requirements,challenges,trends,and future
1
2019
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
区块链安全问题:研究现状与展望
1
2016
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
区块链安全问题:研究现状与展望
1
2016
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
Applications of blockchains in the Internet of things:a comprehensive survey
1
2019
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
Blind signature system
1
1984
... 加密货币的概念起源于一种基于盲签名(blind signature)的匿名交易技术[6],最早的加密货币交易模型“electronic cash”[7]如图1所示. ...
How to make a mint:the cryptography of anonymous electronic cash
1
1997
... 加密货币的概念起源于一种基于盲签名(blind signature)的匿名交易技术[6],最早的加密货币交易模型“electronic cash”[7]如图1所示. ...
Proofs of work and bread pudding protocols
1
1999
... 最早的加密货币构想将银行作为构建信任的基础,呈现中心化特点.此后,加密货币朝着去中心化方向发展,并试图用工作量证明(PoW,poof of work)[8]或其改进方法定义价值.比特币在此基础上,采用新型分布式账本技术保证被所有节点维护的数据不可篡改,从而成功构建信任基础,成为真正意义上的去中心化加密货币.区块链从去中心化加密货币发展而来,随着区块链的进一步发展,去中心化加密货币已经成为区块链的主要应用之一. ...
P2P 关键技术研究综述
1
2010
... 对等网络的体系架构可分为无结构对等网络、结构化对等网络和混合式对等网络[9],根据节点的逻辑拓扑关系,区块链网络的组网结构也可以划分为上述3种,如图3所示. ...
P2P 关键技术研究综述
1
2010
... 对等网络的体系架构可分为无结构对等网络、结构化对等网络和混合式对等网络[9],根据节点的逻辑拓扑关系,区块链网络的组网结构也可以划分为上述3种,如图3所示. ...
Epidemic algorithms for replicated database maintenance
1
1988
... 传播层实现对等节点间数据的基本传输,包括2 种数据传播方式:单点传播和多点传播.单点传播是指数据在2个已知节点间直接进行传输而不经过其他节点转发的传播方式;多点传播是指接收数据的节点通过广播向邻近节点进行数据转发的传播方式,区块链网络普遍基于Gossip协议[10]实现洪泛传播.连接层用于获取节点信息,监测和改变节点间连通状态,确保节点间链路的可用性(availability).具体而言,连接层协议帮助新加入节点获取路由表数据,通过定时心跳监测为节点保持稳定连接,在邻居节点失效等情况下为节点关闭连接等.交互逻辑层是区块链网络的核心,从主要流程上看,该层协议承载对等节点间账本数据的同步、交易和区块数据的传输、数据校验结果的反馈等信息交互逻辑,除此之外,还为节点选举、共识算法实施等复杂操作和扩展应用提供消息通路. ...
Information propagation in the bitcoin network
1
2013
... 随着近年来区块链网络的爆炸式发展以及开源特点,学术界开始关注大型公有链项目的网络状况,监测并研究它们的特点,研究对象主要为比特币网络.Decker等[11]设计和实现测量工具,分析传播时延数据、协议数据和地址数据,建模分析影响比特币网络性能的网络层因素,基于此提出各自的优化方法.Fadhil等[12]提出基于事件仿真的比特币网络仿真模型,利用真实测量数据验证模型的有效性,最后提出优化机制 BCBSN,旨在设立超级节点降低网络波动.Kaneko 等[13]将区块链节点分为共识节点和验证节点,其中共识节点采用无结构组网方式,验证节点采用结构化组网方式,利用不同组网方式的优点实现网络负载的均衡. ...
Locality based approach to improve propagation delay on the bitcoin peer-to-peer network
1
2017
... 随着近年来区块链网络的爆炸式发展以及开源特点,学术界开始关注大型公有链项目的网络状况,监测并研究它们的特点,研究对象主要为比特币网络.Decker等[11]设计和实现测量工具,分析传播时延数据、协议数据和地址数据,建模分析影响比特币网络性能的网络层因素,基于此提出各自的优化方法.Fadhil等[12]提出基于事件仿真的比特币网络仿真模型,利用真实测量数据验证模型的有效性,最后提出优化机制 BCBSN,旨在设立超级节点降低网络波动.Kaneko 等[13]将区块链节点分为共识节点和验证节点,其中共识节点采用无结构组网方式,验证节点采用结构化组网方式,利用不同组网方式的优点实现网络负载的均衡. ...
DHT clustering for load balancing considering blockchain data size
1
2018
... 随着近年来区块链网络的爆炸式发展以及开源特点,学术界开始关注大型公有链项目的网络状况,监测并研究它们的特点,研究对象主要为比特币网络.Decker等[11]设计和实现测量工具,分析传播时延数据、协议数据和地址数据,建模分析影响比特币网络性能的网络层因素,基于此提出各自的优化方法.Fadhil等[12]提出基于事件仿真的比特币网络仿真模型,利用真实测量数据验证模型的有效性,最后提出优化机制 BCBSN,旨在设立超级节点降低网络波动.Kaneko 等[13]将区块链节点分为共识节点和验证节点,其中共识节点采用无结构组网方式,验证节点采用结构化组网方式,利用不同组网方式的优点实现网络负载的均衡. ...
An analysis of anonymity in bitcoin using P2P network traffic
2014
Deanonymisation of clients in bitcoin P2P network
2014
Dandelion:redesigning the bitcoin network for anonymity
1
2017
... 匿名性是加密货币的重要特性之一,但从网络层视角看,区块链的匿名性并不能有效保证,因为攻击者可以利用监听并追踪 IP 地址的方式推测出交易之间、交易与公钥地址之间的关系,通过匿名隐私研究可以主动发掘安全隐患,规避潜在危害.Koshy 等[16,17]从网络拓扑、传播层协议和作恶模型3个方面对比特币网络进行建模,通过理论分析和仿真实验证明了比特币网络协议在树形组网结构下仅具备弱匿名性,在此基础上提出 Dandelion 网络策略以较低的网络开销优化匿名性,随后又提出 Dandelion++原理,以最优信息理论保证来抵抗大规模去匿名攻击. ...
Dandelion++:lightweight cryptocurrency networking with formal anonymity guarantees
1
2018
... 匿名性是加密货币的重要特性之一,但从网络层视角看,区块链的匿名性并不能有效保证,因为攻击者可以利用监听并追踪 IP 地址的方式推测出交易之间、交易与公钥地址之间的关系,通过匿名隐私研究可以主动发掘安全隐患,规避潜在危害.Koshy 等[16,17]从网络拓扑、传播层协议和作恶模型3个方面对比特币网络进行建模,通过理论分析和仿真实验证明了比特币网络协议在树形组网结构下仅具备弱匿名性,在此基础上提出 Dandelion 网络策略以较低的网络开销优化匿名性,随后又提出 Dandelion++原理,以最优信息理论保证来抵抗大规模去匿名攻击. ...
Eclipse attacks on Bitcoin’s peer-to-peer network
1
2015
... 区块链重点关注其数据层和共识层面机制,并基于普通网络构建开放的互联环境,该方式极易遭受攻击.为提高区块链网络的安全性,学术界展开研究并给出了相应的解决方案.Heilman 等[18]对比特币和以太坊网络实施日蚀攻击(eclipse attack)——通过屏蔽正确节点从而完全控制特定节点的信息来源,证实了该攻击的可行性.Apostolaki等[19]提出针对比特币网络的 BGP(border gateway protocal)劫持攻击,通过操纵自治域间路由或拦截域间流量来制造节点通信阻塞,表明针对关键数据的沿路攻击可以大大降低区块传播性能. ...
Hijacking bitcoin:routing attacks on cryptocurrencies
2
2017
... 区块链重点关注其数据层和共识层面机制,并基于普通网络构建开放的互联环境,该方式极易遭受攻击.为提高区块链网络的安全性,学术界展开研究并给出了相应的解决方案.Heilman 等[18]对比特币和以太坊网络实施日蚀攻击(eclipse attack)——通过屏蔽正确节点从而完全控制特定节点的信息来源,证实了该攻击的可行性.Apostolaki等[19]提出针对比特币网络的 BGP(border gateway protocal)劫持攻击,通过操纵自治域间路由或拦截域间流量来制造节点通信阻塞,表明针对关键数据的沿路攻击可以大大降低区块传播性能. ...
... 网络层主要缺陷在于安全性,可拓展性则有待优化.如何防御以 BGP 劫持为代表的网络攻击将成为区块链底层网络的安全研究方向[19].信息中心网络将重塑区块链基础传输网络,通过请求聚合和数据缓存减少网内冗余流量并加速通信传输[69].相比于数据层和共识层,区块链网络的关注度较低,但却是影响安全性、可拓展性的基本因素. ...
Improving authenticated dynamic dictionaries,with applications to cryptocurrencies
1
2017
... 高效验证的学术问题源于验证数据结构(ADS,authenticated data structure),即利用特定数据结构快速验证数据的完整性,实际上 MKT 也是其中的一种.为了适应区块链数据的动态性(dynamical)并保持良好性能,学术界展开了研究.Reyzin等[20]基于AVL树形结构提出AVL+,并通过平衡验证路径、缺省堆栈交易集等机制,简化轻量级节点的区块头验证过程.Zhang等[21]提出GEM2-tree结构,并对其进行优化提出 GEM2כ-tree 结构,通过分解单树结构、动态调整节点计算速度、扩展数据索引等机制降低以太坊节点计算开销. ...
GEM^2-tree:a gas-efficient structure for authenticated range queries in blockchain
1
2019
... 高效验证的学术问题源于验证数据结构(ADS,authenticated data structure),即利用特定数据结构快速验证数据的完整性,实际上 MKT 也是其中的一种.为了适应区块链数据的动态性(dynamical)并保持良好性能,学术界展开了研究.Reyzin等[20]基于AVL树形结构提出AVL+,并通过平衡验证路径、缺省堆栈交易集等机制,简化轻量级节点的区块头验证过程.Zhang等[21]提出GEM2-tree结构,并对其进行优化提出 GEM2כ-tree 结构,通过分解单树结构、动态调整节点计算速度、扩展数据索引等机制降低以太坊节点计算开销. ...
An analysis of anonymity in the bitcoin system
1
2011
... 区块数据直接承载业务信息,因此区块数据的匿名关联性分析更为直接.Reid等[22]将区块数据建模为事务网络和用户网络,利用多交易数据的用户指向性分析成功降低网络复杂度.Meiklejohn等[23]利用启发式聚类方法分析交易数据的流动特性并对用户进行分组,通过与这些服务的互动来识别主要机构的比特币地址.Awan 等[24]使用优势集(dominant set)方法对区块链交易进行自动分类,从而提高分析准确率. ...
A fistful of bitcoins:characterizing payments among men with no names
1
2013
... 区块数据直接承载业务信息,因此区块数据的匿名关联性分析更为直接.Reid等[22]将区块数据建模为事务网络和用户网络,利用多交易数据的用户指向性分析成功降低网络复杂度.Meiklejohn等[23]利用启发式聚类方法分析交易数据的流动特性并对用户进行分组,通过与这些服务的互动来识别主要机构的比特币地址.Awan 等[24]使用优势集(dominant set)方法对区块链交易进行自动分类,从而提高分析准确率. ...
Blockchain transaction analysis using dominant sets
1
2017
... 区块数据直接承载业务信息,因此区块数据的匿名关联性分析更为直接.Reid等[22]将区块数据建模为事务网络和用户网络,利用多交易数据的用户指向性分析成功降低网络复杂度.Meiklejohn等[23]利用启发式聚类方法分析交易数据的流动特性并对用户进行分组,通过与这些服务的互动来识别主要机构的比特币地址.Awan 等[24]使用优势集(dominant set)方法对区块链交易进行自动分类,从而提高分析准确率. ...
Increasing anonymity in bitcoin
1
2014
... 隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私.Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性.非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成. ...
Zerocoin:anonymous distributed e-cash from bitcoin
1
2013
... 隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私.Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性.非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成. ...
Zerocash:decentralized anonymous payments from bitcoin
1
2014
... 隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私.Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性.非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成. ...
A anti-quantum transaction authentication approach in blockchain
1
2018
... 隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私.Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性.非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成. ...
The sybil attack
1
2002
... 区块链网络中每个节点必须维护完全相同的账本数据,然而各节点产生数据的时间不同、获取数据的来源未知,存在节点故意广播错误数据的可能性,这将导致女巫攻击[29]、双花攻击[30]等安全风险;除此之外,节点故障、网络拥塞带来的数据异常也无法预测.因此,如何在不可信的环境下实现账本数据的全网统一是共识层解决的关键问题.实际上,上述错误是拜占庭将军问题(the Byzantine generals problem)[31]在区块链中的具体表现,即拜占庭错误——相互独立的组件可以做出任意或恶意的行为,并可能与其他错误组件产生协作,此类错误在可信分布式计算领域被广泛研究. ...
Double-spending fast payments in bitcoin
1
2012
... 区块链网络中每个节点必须维护完全相同的账本数据,然而各节点产生数据的时间不同、获取数据的来源未知,存在节点故意广播错误数据的可能性,这将导致女巫攻击[29]、双花攻击[30]等安全风险;除此之外,节点故障、网络拥塞带来的数据异常也无法预测.因此,如何在不可信的环境下实现账本数据的全网统一是共识层解决的关键问题.实际上,上述错误是拜占庭将军问题(the Byzantine generals problem)[31]在区块链中的具体表现,即拜占庭错误——相互独立的组件可以做出任意或恶意的行为,并可能与其他错误组件产生协作,此类错误在可信分布式计算领域被广泛研究. ...
The byzantine generals problem
1
1982
... 区块链网络中每个节点必须维护完全相同的账本数据,然而各节点产生数据的时间不同、获取数据的来源未知,存在节点故意广播错误数据的可能性,这将导致女巫攻击[29]、双花攻击[30]等安全风险;除此之外,节点故障、网络拥塞带来的数据异常也无法预测.因此,如何在不可信的环境下实现账本数据的全网统一是共识层解决的关键问题.实际上,上述错误是拜占庭将军问题(the Byzantine generals problem)[31]在区块链中的具体表现,即拜占庭错误——相互独立的组件可以做出任意或恶意的行为,并可能与其他错误组件产生协作,此类错误在可信分布式计算领域被广泛研究. ...
Consensus in the age of blockchains
1
... 状态机复制(state-machine replication)是解决分布式系统容错问题的常用理论.其基本思想为:任何计算都表示为状态机,通过接收消息来更改其状态.假设一组副本以相同的初始状态开始,并且能够就一组公共消息的顺序达成一致,那么它们可以独立进行状态的演化计算,从而正确维护各自副本之间的一致性.同样,区块链也使用状态机复制理论解决拜占庭容错问题,如果把每个节点的数据视为账本数据的副本,那么节点接收到的交易、区块即为引起副本状态变化的消息.状态机复制理论实现和维持副本的一致性主要包含2个要素:正确执行计算逻辑的确定性状态机和传播相同序列消息的共识协议.其中,共识协议是影响容错效果、吞吐量和复杂度的关键,不同安全性、可扩展性要求的系统需要的共识协议各有不同.学术界普遍根据通信模型和容错类型对共识协议进行区分[32],因此严格地说,区块链使用的共识协议需要解决的是部分同步(partial synchrony)模型[33]下的拜占庭容错问题. ...
Consensus in the presence of partial synchrony
2
1988
... 状态机复制(state-machine replication)是解决分布式系统容错问题的常用理论.其基本思想为:任何计算都表示为状态机,通过接收消息来更改其状态.假设一组副本以相同的初始状态开始,并且能够就一组公共消息的顺序达成一致,那么它们可以独立进行状态的演化计算,从而正确维护各自副本之间的一致性.同样,区块链也使用状态机复制理论解决拜占庭容错问题,如果把每个节点的数据视为账本数据的副本,那么节点接收到的交易、区块即为引起副本状态变化的消息.状态机复制理论实现和维持副本的一致性主要包含2个要素:正确执行计算逻辑的确定性状态机和传播相同序列消息的共识协议.其中,共识协议是影响容错效果、吞吐量和复杂度的关键,不同安全性、可扩展性要求的系统需要的共识协议各有不同.学术界普遍根据通信模型和容错类型对共识协议进行区分[32],因此严格地说,区块链使用的共识协议需要解决的是部分同步(partial synchrony)模型[33]下的拜占庭容错问题. ...
... 比特币在网络层采用非结构化方式组网,路由表呈现随机性.节点间则采用多点传播方式传递数据,曾基于Gossip协议实现,为提高网络的抗匿名分析能力改为基于Diffusion协议实现[33].节点利用一系列控制协议确保链路的可用性,包括版本获取(Vetsion/Verack)、地址获取(Addr/GetAddr)、心跳信息(PING/PONG)等.新节点入网时,首先向硬编码 DNS 节点(种子节点)请求初始节点列表;然后向初始节点随机请求它们路由表中的节点信息,以此生成自己的路由表;最后节点通过控制协议与这些节点建立连接,并根据信息交互的频率更新路由表中节点时间戳,从而保证路由表中的节点都是活动的.交互逻辑层为建立共识交互通道,提供了区块获取(GetBlock)、交易验证(MerkleBlock)、主链选择(CmpctBlock)等协议;轻节点只需要进行简单的区块头验证,因此通过头验证(GetHeader/Header)协议和连接层中的过滤设置协议指定需要验证的区块头即可建立简单验证通路.在安全机制方面,比特币网络可选择利用匿名通信网络Tor作为数据传输承载,通过沿路径的层层数据加密机制来保护对端身份. ...
Bitcoin and beyond:a technical survey on decentralized digital currencies
1
2016
... 区块链网络中主要包含PoX(poof of X)[34]、BFT(byzantine-fault tolerant)和 CFT(crash-fault tolerant)类基础共识协议.PoX 类协议是以 PoW (proof of work)为代表的基于奖惩机制驱动的新型共识协议,为了适应数据吞吐量、资源利用率和安全性的需求,人们又提出PoS(proof of stake)、PoST (proof of space-time)等改进协议.它们的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.BFT类协议是指解决拜占庭容错问题的传统共识协议及其改良协议,包括PBFT、BFT-SMaRt、Tendermint等.CFT类协议用于实现崩溃容错,通过身份证明等手段规避节点作恶的情况,仅考虑节点或网络的崩溃(crash)故障,主要包括Raft、Paxos、Kafka等协议. ...
Blockchains consensus protocols in the wild
1
2017
... 非许可链和许可链的开放程度和容错需求存在差异,共识层面技术在两者之间产生了较大区别.具体而言,非许可链完全开放,需要抵御严重的拜占庭风险,多采用PoX、BFT类协议并配合奖惩机制实现共识.许可链拥有准入机制,网络中节点身份可知,一定程度降低了拜占庭风险,因此可采用BFT类协议、CFT类协议构建相同的信任模型[35]. ...
Practical byzantine fault tolerance and proactive recovery
1
2002
... PBFT是 BFT经典共识协议,其主要流程如图8 所示.PBFT将节点分为主节点和副节点,其中主节点负责将交易打包成区块,副节点参与验证和转发,假设作恶节点数量为f.PBFT共识主要分为预准备、准备和接受3个阶段,主节点首先收集交易后排序并提出合法区块提案;其余节点先验证提案的合法性,然后根据区块内交易顺序依次执行并将结果摘要组播;各节点收到2f个与自身相同的摘要后便组播接受投票;当节点收到超过2f+1个投票时便存储区块及其产生的新状态[36]. ...
In search of an understandable consensus algorithm
1
2015
... Raft[37]是典型的崩溃容错共识协议,以可用性强著称.Raft将节点分为跟随节点、候选节点和领导节点,领导节点负责将交易打包成区块,追随节点响应领导节点的同步指令,候选节点完成领导节点的选举工作.当网络运行稳定时,只存在领导节点和追随节点,领导节点向追随节点推送区块数据从而实现同步.节点均设置生存时间决定角色变化周期,领导节点的心跳信息不断重置追随节点的生存时间,当领导节点发生崩溃时,追随节点自动转化为候选节点并进入选举流程,实现网络自恢复. ...
Proofs of useful work
1
2017
... 如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费.PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块.PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举.Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性.PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用. ...
Comparative analysis of blockchain consensus algorithms
1
2018
... 如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费.PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块.PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举.Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性.PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用. ...
Ouroboros:a provably secure proof-of-stake blockchain protocol
1
2017
... 如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费.PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块.PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举.Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性.PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用. ...
Tight proofs of space and replication
1
... 如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费.PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块.PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举.Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性.PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用. ...
A vademecum on blockchain technologies:when,which,and how
1
2019
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
A survey on consensus mechanisms and mining strategy management in blockchain networks
1
2019
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
Formal modeling and verification of a federated byzantine agreement algorithm for blockchain platforms
1
2019
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
An overview of blockchain technology:architecture,consensus,and future trends
1
2017
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
HotStuff:BFT consensus in the lens of blockchain
1
2019
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
Libra critique towards global decentralized financial system
1
2019
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
Proof of activity:extending bitcoin’s proof of work via proof of stake
1
... Hybrid 类协议是研究趋势之一.PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享.PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力.ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延.Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份. ...
Bitcoin meets strong consistency
1
... Hybrid 类协议是研究趋势之一.PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享.PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力.ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延.Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份. ...
Enhancing bitcoin security and performance with strong consistency via collective signing
1
2016
... Hybrid 类协议是研究趋势之一.PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享.PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力.ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延.Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份. ...
Casper the friendly finality gadget
1
... Hybrid 类协议是研究趋势之一.PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享.PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力.ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延.Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份. ...
Bitcoin and beyond:a technical survey on decentralized digital currencies
1
2016
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
Non-interactive proofs of proof-of-work
1
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
A secure sharding protocol for open blockchains
1
2016
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
OmniLedger:a secure,scale-out,decentralized ledger via sharding
1
2018
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
PolyShard:coded sharding achieves linearly scaling efficiency and security simultaneously
1
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
A survey on the scalability of blockchain systems
1
2019
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
Scalable funding of bitcoin micropayment channel networks
1
2017
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
Making smart contracts smarter
1
2016
... 一方面,沙盒环境承载了区块链节点运行条件,针对虚拟机展开的攻击更为直接;另一方面,智能合约直接对账本进行操作,其漏洞更易影响业务运行,因此控制层的安全防护研究成为热点.Luu等[59]分析了运行于EVM中的智能合约安全性,指出底层平台的分布式语义差异带来的安全问题.Brent 等[60]提出智能合约安全分析框架 Vandal,将EVM 字节码转换为语义逻辑关,为分析合约安全漏洞提供便利.Jiang 等[61]预先定义用于安全漏洞的特征,然后模拟执行大规模交易,通过分析日志中的合约行为实现漏洞检测. ...
Vandal:a scalable security analysis framework for smart contracts
1
2018
... 一方面,沙盒环境承载了区块链节点运行条件,针对虚拟机展开的攻击更为直接;另一方面,智能合约直接对账本进行操作,其漏洞更易影响业务运行,因此控制层的安全防护研究成为热点.Luu等[59]分析了运行于EVM中的智能合约安全性,指出底层平台的分布式语义差异带来的安全问题.Brent 等[60]提出智能合约安全分析框架 Vandal,将EVM 字节码转换为语义逻辑关,为分析合约安全漏洞提供便利.Jiang 等[61]预先定义用于安全漏洞的特征,然后模拟执行大规模交易,通过分析日志中的合约行为实现漏洞检测. ...
ContractFuzzer:fuzzing smart contracts for vulnerability detection
1
2018
... 一方面,沙盒环境承载了区块链节点运行条件,针对虚拟机展开的攻击更为直接;另一方面,智能合约直接对账本进行操作,其漏洞更易影响业务运行,因此控制层的安全防护研究成为热点.Luu等[59]分析了运行于EVM中的智能合约安全性,指出底层平台的分布式语义差异带来的安全问题.Brent 等[60]提出智能合约安全分析框架 Vandal,将EVM 字节码转换为语义逻辑关,为分析合约安全漏洞提供便利.Jiang 等[61]预先定义用于安全漏洞的特征,然后模拟执行大规模交易,通过分析日志中的合约行为实现漏洞检测. ...
Decentralized user-centric access control using pubsub over blockchain
1
2017
... 智慧城市是指利用 ICT 优化公共资源利用效果、提高居民生活质量、丰富设施信息化能力的研究领域,该领域包括个人信息管理、智慧医疗、智慧交通、供应链管理等具体场景.智慧城市强调居民、设施等各类数据的采集、分析与使能,数据可靠性、管理透明化、共享可激励等需求为智慧城市带来了许多技术挑战.区块链去中心化的交互方式避免了单点故障、提升管理公平性,公开透明的账本保证数据可靠及可追溯性,多种匿名机制利于居民隐私的保护,因此区块链有利于问题的解决.Hashemi等[62]将区块链用于权限数据存储,构建去中心化的个人数据接入控制模型;Bao等[63]利用区块链高效认证和管理用户标识,保护车主的身份、位置、车辆信息等个人数据. ...
Pseudonym management through blockchain:cost-efficient privacy preservation on intelligent transportation systems
1
2019
... 智慧城市是指利用 ICT 优化公共资源利用效果、提高居民生活质量、丰富设施信息化能力的研究领域,该领域包括个人信息管理、智慧医疗、智慧交通、供应链管理等具体场景.智慧城市强调居民、设施等各类数据的采集、分析与使能,数据可靠性、管理透明化、共享可激励等需求为智慧城市带来了许多技术挑战.区块链去中心化的交互方式避免了单点故障、提升管理公平性,公开透明的账本保证数据可靠及可追溯性,多种匿名机制利于居民隐私的保护,因此区块链有利于问题的解决.Hashemi等[62]将区块链用于权限数据存储,构建去中心化的个人数据接入控制模型;Bao等[63]利用区块链高效认证和管理用户标识,保护车主的身份、位置、车辆信息等个人数据. ...
Hosting virtual IoT resources on edge-hosts with blockchain
1
2016
... 边缘计算是一种将计算、存储、网络资源从云平台迁移到网络边缘的分布式信息服务架构,试图将传统移动通信网、互联网和物联网等业务进行深度融合,减少业务交付的端到端时延,提升用户体验.安全问题是边缘计算面临的一大技术挑战,一方面,边缘计算的层次结构中利用大量异构终端设备提供用户服务,这些设备可能产生恶意行为;另一方面,服务迁移过程中的数据完整性和真实性需要得到保障.区块链在这种复杂的工作环境和开放的服务架构中能起到较大作用.首先,区块链能够在边缘计算底层松散的设备网络中构建不可篡改的账本,提供设备身份和服务数据验证的依据.其次,设备能在智能合约的帮助下实现高度自治,为边缘计算提供设备可信互操作基础.Samaniego等[64]提出了一种基于区块链的虚拟物联网资源迁移架构,通过区块链共享资源数据从而保障安全性.Stanciu[65]结合软件定义网络(SDN)、雾计算和区块链技术提出分布式安全云架构,解决雾节点中SDN控制器流表策略的安全分发问题.Ziegler等[66]基于 Plasma 框架提出雾计算场景下的区块链可扩展应用方案,提升雾计算网关的安全性. ...
Blockchain based distributed control system for edge computing
1
2017
... 边缘计算是一种将计算、存储、网络资源从云平台迁移到网络边缘的分布式信息服务架构,试图将传统移动通信网、互联网和物联网等业务进行深度融合,减少业务交付的端到端时延,提升用户体验.安全问题是边缘计算面临的一大技术挑战,一方面,边缘计算的层次结构中利用大量异构终端设备提供用户服务,这些设备可能产生恶意行为;另一方面,服务迁移过程中的数据完整性和真实性需要得到保障.区块链在这种复杂的工作环境和开放的服务架构中能起到较大作用.首先,区块链能够在边缘计算底层松散的设备网络中构建不可篡改的账本,提供设备身份和服务数据验证的依据.其次,设备能在智能合约的帮助下实现高度自治,为边缘计算提供设备可信互操作基础.Samaniego等[64]提出了一种基于区块链的虚拟物联网资源迁移架构,通过区块链共享资源数据从而保障安全性.Stanciu[65]结合软件定义网络(SDN)、雾计算和区块链技术提出分布式安全云架构,解决雾节点中SDN控制器流表策略的安全分发问题.Ziegler等[66]基于 Plasma 框架提出雾计算场景下的区块链可扩展应用方案,提升雾计算网关的安全性. ...
Integration of fog computing and blockchain technology using the plasma framework
1
2019
... 边缘计算是一种将计算、存储、网络资源从云平台迁移到网络边缘的分布式信息服务架构,试图将传统移动通信网、互联网和物联网等业务进行深度融合,减少业务交付的端到端时延,提升用户体验.安全问题是边缘计算面临的一大技术挑战,一方面,边缘计算的层次结构中利用大量异构终端设备提供用户服务,这些设备可能产生恶意行为;另一方面,服务迁移过程中的数据完整性和真实性需要得到保障.区块链在这种复杂的工作环境和开放的服务架构中能起到较大作用.首先,区块链能够在边缘计算底层松散的设备网络中构建不可篡改的账本,提供设备身份和服务数据验证的依据.其次,设备能在智能合约的帮助下实现高度自治,为边缘计算提供设备可信互操作基础.Samaniego等[64]提出了一种基于区块链的虚拟物联网资源迁移架构,通过区块链共享资源数据从而保障安全性.Stanciu[65]结合软件定义网络(SDN)、雾计算和区块链技术提出分布式安全云架构,解决雾节点中SDN控制器流表策略的安全分发问题.Ziegler等[66]基于 Plasma 框架提出雾计算场景下的区块链可扩展应用方案,提升雾计算网关的安全性. ...
Blockchained on-device federated learning
1
2018
... 人工智能是一类智能代理的研究,使机器感知环境/信息,然后进行正确的行为决策,正确是指达成人类预定的某些目标.人工智能的关键在于算法,而大部分机器学习和深度学习算法建立于体积庞大的数据集和中心化的训练模型之上,该方式易受攻击或恶意操作使数据遭到篡改,其后果为模型的不可信与算力的浪费.此外,数据采集过程中无法确保下游设备的安全性,无法保证数据来源的真实性与完整性,其后果将在自动驾驶等场景中被放大.区块链不可篡改的特性可以实现感知和训练过程的可信.另外,去中心化和合约自治特性为人工智能训练工作的分解和下放奠定了基础,保障安全的基础上提高计算效率.Kim等[67]利用区块链验证联合学习框架下的分发模型的完整性,并根据计算成本提供相应的激励,优化整体学习效果.Bravo-Marquez 等[68]提出共识机制“学习证明”以减轻PoX类共识的计算浪费,构建公共可验证的学习模型和实验数据库. ...
Proof-of- learning:a blockchain consensus mechanism based on machine learning competitions
1
2019
... 人工智能是一类智能代理的研究,使机器感知环境/信息,然后进行正确的行为决策,正确是指达成人类预定的某些目标.人工智能的关键在于算法,而大部分机器学习和深度学习算法建立于体积庞大的数据集和中心化的训练模型之上,该方式易受攻击或恶意操作使数据遭到篡改,其后果为模型的不可信与算力的浪费.此外,数据采集过程中无法确保下游设备的安全性,无法保证数据来源的真实性与完整性,其后果将在自动驾驶等场景中被放大.区块链不可篡改的特性可以实现感知和训练过程的可信.另外,去中心化和合约自治特性为人工智能训练工作的分解和下放奠定了基础,保障安全的基础上提高计算效率.Kim等[67]利用区块链验证联合学习框架下的分发模型的完整性,并根据计算成本提供相应的激励,优化整体学习效果.Bravo-Marquez 等[68]提出共识机制“学习证明”以减轻PoX类共识的计算浪费,构建公共可验证的学习模型和实验数据库. ...
基于命名数据网络的区块链信息传输机制
1
2018
... 网络层主要缺陷在于安全性,可拓展性则有待优化.如何防御以 BGP 劫持为代表的网络攻击将成为区块链底层网络的安全研究方向[19].信息中心网络将重塑区块链基础传输网络,通过请求聚合和数据缓存减少网内冗余流量并加速通信传输[69].相比于数据层和共识层,区块链网络的关注度较低,但却是影响安全性、可拓展性的基本因素. ...
基于命名数据网络的区块链信息传输机制
1
2018
... 网络层主要缺陷在于安全性,可拓展性则有待优化.如何防御以 BGP 劫持为代表的网络攻击将成为区块链底层网络的安全研究方向[19].信息中心网络将重塑区块链基础传输网络,通过请求聚合和数据缓存减少网内冗余流量并加速通信传输[69].相比于数据层和共识层,区块链网络的关注度较低,但却是影响安全性、可拓展性的基本因素. ...
/
〈
〉
期刊网站版权所有 © 2021 《通信学报》编辑部
地址:北京市丰台区东铁匠营街道顺八条1号院B座“北阳晨光大厦”2层 邮编:100079
电话:010-53878169、53859522、53878236 电子邮件:xuebao@ptpress.com.cn; txxb@bjxintong.com.cn
期刊网站版权所有 © 2021 《通信学报》编辑部
地址:北京市丰台区东铁匠营街道顺八条1号院B座“北阳晨光大厦”2层
邮编:100079 电话:010-53878169、53859522、53878236
电子邮件:txxb@bjxintong.com.cn
区块链技术研究综述:原理、进展与应用
区块链技术研究综述:原理、进展与应用
主管单位:中国科学技术协会
主办单位:中国通信学会
ISSN 1000-436X CN 11-2102/TN
首页
期刊简介
编委会
投稿指南
道德声明
期刊协议
期刊订阅
会议活动
下载中心
联系我们
English
期刊介绍
期刊信息
投稿须知
稿件格式要求
审稿流程
下载中心
联系方式
Toggle navigation
首页
期刊简介
期刊介绍
期刊信息
编委会
投稿指南
投稿须知
稿件格式要求
审稿流程
下载中心
道德声明
期刊协议
期刊订阅
会议活动
联系我们
English
通信学报, 2020, 41(1): 134-151 doi: 10.11959/j.issn.1000-436x.2020027
综述
区块链技术研究综述:原理、进展与应用
曾诗钦1, 霍如2,3, 黄韬1,3, 刘江1,3, 汪硕1,3, 冯伟4
1 北京邮电大学网络与交换国家重点实验室,北京 100876
2 北京工业大学北京未来网络科技高精尖创新中心,北京 100124
3 网络通信与安全紫金山实验室,江苏 南京 211111
4 工业和信息化部信息化和软件服务业司,北京 100846
Survey of blockchain:principle,progress and application
ZENG Shiqin1, HUO Ru2,3, HUANG Tao1,3, LIU Jiang1,3, WANG Shuo1,3, FENG Wei4
1 State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China
2 Beijing Advanced Innovation Center for Future Internet Technology,Beijing University of Technology,Beijing 100124,China
3 Purple Mountain Laboratories,Nanjing 211111,China
4 Department of Information Technology Application and Software Services,Beijing 100846,China
通讯作者: 霍如,huoru@bjut.edu.cn
修回日期: 2019-12-12
网络出版日期: 2020-01-25
基金资助:
国家高技术研究发展计划(“863”计划)基金资助项目. 2015AA015702未来网络操作系统发展战略研究基金资助项目. 2019-XY-5
Revised: 2019-12-12
Online: 2020-01-25
Fund supported:
The National High Technology Research and Development Program of China (863 Program). 2015AA015702The Development Strategy Research of Future Network Operating System. 2019-XY-5
作者简介 About authors
曾诗钦(1995-),男,广西南宁人,北京邮电大学博士生,主要研究方向为区块链、标识解析技术、工业互联网
。
霍如(1988-),女,黑龙江哈尔滨人,博士,北京工业大学讲师,主要研究方向为计算机网络、信息中心网络、网络缓存策略与算法、工业互联网、标识解析技术等。
。
黄韬(1980-),男,重庆人,博士,北京邮电大学教授,主要研究方向为未来网络体系架构、软件定义网络、网络虚拟化等。
。
刘江(1983-),男,河南郑州人,博士,北京邮电大学教授,主要研究方向为未来网络体系架构、软件定义网络、网络虚拟化、信息中心网络等。
。
汪硕(1991-),男,河南灵宝人,博士,北京邮电大学在站博士后,主要研究方向为数据中心网络、软件定义网络、网络流量调度等。
。
冯伟(1980-),男,河北邯郸人,博士,工业和信息化部副研究员,主要研究方向为工业互联网平台、数字孪生、信息化和工业化融合发展关键技术等
。
摘要
区块链是一种分布式账本技术,依靠智能合约等逻辑控制功能演变为完整的存储系统。其分类方式、服务模式和应用需求的变化导致核心技术形态的多样性发展。为了完整地认知区块链生态系统,设计了一个层次化的区块链技术体系结构,进一步深入剖析区块链每层结构的基本原理、技术关联以及研究进展,系统归纳典型区块链项目的技术选型和特点,最后给出智慧城市、工业互联网等区块链前沿应用方向,提出区块链技术挑战与研究展望。
关键词:
区块链
;
加密货币
;
去中心化
;
层次化技术体系结构
;
技术多样性
;
工业区块链
Abstract
Blockchain is a kind of distributed ledger technology that upgrades to a complete storage system by adding logic control functions such as intelligent contracts.With the changes of its classification,service mode and application requirements,the core technology forms of Blockchain show diversified development.In order to understand the Blockchain ecosystem thoroughly,a hierarchical technology architecture of Blockchain was proposed.Furthermore,each layer of blockchain was analyzed from the perspectives of basic principle,related technologies and research progress in-depth.Moreover,the technology selections and characteristics of typical Blockchain projects were summarized systematically.Finally,some application directions of blockchain frontiers,technology challenges and research prospects including Smart Cities and Industrial Internet were given.
Keywords:
blockchain
;
cryptocurrency
;
decentralization
;
hierarchical technology architecture
;
technology diversity
;
PDF (1174KB)
元数据
多维度评价
相关文章
导出
EndNote|
Ris|
Bibtex
收藏本文
本文引用格式
曾诗钦, 霍如, 黄韬, 刘江, 汪硕, 冯伟. 区块链技术研究综述:原理、进展与应用. 通信学报[J], 2020, 41(1): 134-151 doi:10.11959/j.issn.1000-436x.2020027
ZENG Shiqin. Survey of blockchain:principle,progress and application. Journal on Communications[J], 2020, 41(1): 134-151 doi:10.11959/j.issn.1000-436x.2020027
1 引言
2008年,中本聪提出了去中心化加密货币——比特币(bitcoin)的设计构想。2009年,比特币系统开始运行,标志着比特币的正式诞生。2010—2015 年,比特币逐渐进入大众视野。2016—2018年,随着各国陆续对比特币进行公开表态以及世界主流经济的不确定性增强,比特币的受关注程度激增,需求量迅速扩大。事实上,比特币是区块链技术最成功的应用场景之一。伴随着以太坊(ethereum)等开源区块链平台的诞生以及大量去中心化应用(DApp,decentralized application)的落地,区块链技术在更多的行业中得到了应用。
由于具备过程可信和去中心化两大特点,区块链能够在多利益主体参与的场景下以低成本的方式构建信任基础,旨在重塑社会信用体系。近两年来区块链发展迅速,人们开始尝试将其应用于金融、教育、医疗、物流等领域。但是,资源浪费、运行低效等问题制约着区块链的发展,这些因素造成区块链分类方式、服务模式和应用需求发生快速变化,进一步导致核心技术朝多样化方向发展,因此有必要采取通用的结构分析区块链项目的技术路线和特点,以梳理和明确区块链的研究方向。
区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值。袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势。上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析。本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望。
2 相关概念
随着区块链技术的深入研究,不断衍生出了很多相关的术语,例如“中心化”“去中心化”“公链”“联盟链”等。为了全面地了解区块链技术,并对区块链技术涉及的关键术语有系统的认知,本节将给出区块链及其相关概念的定义,以及它们的联系,更好地区分易使人混淆的术语。
2.1 中心化与去中心化
中心化(centralization)与去中心化(decentralization)最早用来描述社会治理权力的分布特征。从区块链应用角度出发,中心化是指以单个组织为枢纽构建信任关系的场景特点。例如,电子支付场景下用户必须通过银行的信息系统完成身份验证、信用审查和交易追溯等;电子商务场景下对端身份的验证必须依靠权威机构下发的数字证书完成。相反,去中心化是指不依靠单一组织进行信任构建的场景特点,该场景下每个组织的重要性基本相同。
2.2 加密货币
加密货币(cryptocurrency)是一类数字货币(digital currency)技术,它利用多种密码学方法处理货币数据,保证用户的匿名性、价值的有效性;利用可信设施发放和核对货币数据,保证货币数量的可控性、资产记录的可审核性,从而使货币数据成为具备流通属性的价值交换媒介,同时保护使用者的隐私。
加密货币的概念起源于一种基于盲签名(blind signature)的匿名交易技术[6],最早的加密货币交易模型“electronic cash”[7]如图1所示。
图1
新窗口打开|
下载原图ZIP|
生成PPT
图1
“electronic cash”交易模型
交易开始前,付款者使用银行账户兑换加密货币,然后将货币数据发送给领款者,领款者向银行发起核对请求,若该数据为银行签发的合法货币数据,那么银行将向领款者账户记入等额数值。通过盲签名技术,银行完成对货币数据的认证,而无法获得发放货币与接收货币之间的关联,从而保证了价值的有效性、用户的匿名性;银行天然具有发放币种、账户记录的能力,因此保证了货币数量的可控性与资产记录的可审核性。
最早的加密货币构想将银行作为构建信任的基础,呈现中心化特点。此后,加密货币朝着去中心化方向发展,并试图用工作量证明(PoW,poof of work)[8]或其改进方法定义价值。比特币在此基础上,采用新型分布式账本技术保证被所有节点维护的数据不可篡改,从而成功构建信任基础,成为真正意义上的去中心化加密货币。区块链从去中心化加密货币发展而来,随着区块链的进一步发展,去中心化加密货币已经成为区块链的主要应用之一。
2.3 区块链及工作流程
一般认为,区块链是一种融合多种现有技术的新型分布式计算和存储范式。它利用分布式共识算法生成和更新数据,并利用对等网络进行节点间的数据传输,结合密码学原理和时间戳等技术的分布式账本保证存储数据的不可篡改,利用自动化脚本代码或智能合约实现上层应用逻辑。如果说传统数据库实现数据的单方维护,那么区块链则实现多方维护相同数据,保证数据的安全性和业务的公平性。区块链的工作流程主要包含生成区块、共识验证、账本维护3个步骤。
1) 生成区块。区块链节点收集广播在网络中的交易——需要记录的数据条目,然后将这些交易打包成区块——具有特定结构的数据集。
2) 共识验证。节点将区块广播至网络中,全网节点接收大量区块后进行顺序的共识和内容的验证,形成账本——具有特定结构的区块集。
3) 账本维护。节点长期存储验证通过的账本数据并提供回溯检验等功能,为上层应用提供账本访问接口。
2.4 区块链类型
根据不同场景下的信任构建方式,可将区块链分为2类:非许可链(permissionless blockchain)和许可链(permissioned blockchain)。
非许可链也称为公链(public blockchain),是一种完全开放的区块链,即任何人都可以加入网络并参与完整的共识记账过程,彼此之间不需要信任。公链以消耗算力等方式建立全网节点的信任关系,具备完全去中心化特点的同时也带来资源浪费、效率低下等问题。公链多应用于比特币等去监管、匿名化、自由的加密货币场景。
许可链是一种半开放式的区块链,只有指定的成员可以加入网络,且每个成员的参与权各有不同。许可链往往通过颁发身份证书的方式事先建立信任关系,具备部分去中心化特点,相比于非许可链拥有更高的效率。进一步,许可链分为联盟链(consortium blockchain)和私链(fully private blockchain)。联盟链由多个机构组成的联盟构建,账本的生成、共识、维护分别由联盟指定的成员参与完成。在结合区块链与其他技术进行场景创新时,公链的完全开放与去中心化特性并非必需,其低效率更无法满足需求,因此联盟链在某些场景中成为实适用性更强的区块链选型。私链相较联盟链而言中心化程度更高,其数据的产生、共识、维护过程完全由单个组织掌握,被该组织指定的成员仅具有账本的读取权限。
3 区块链体系结构
根据区块链发展现状,本节将归纳区块链的通用层次技术结构、基本原理和研究进展。
现有项目的技术选型多数由比特币演变而来,所以区块链主要基于对等网络通信,拥有新型的基础数据结构,通过全网节点共识实现公共账本数据的统一。但是区块链也存在效率低、功耗大和可扩展性差等问题,因此人们进一步以共识算法、处理模型、交易模式创新为切入点进行技术方案改进,并在此基础上丰富了逻辑控制功能和区块链应用功能,使其成为一种新型计算模式。本文给出如图2 所示的区块链通用层次化技术结构,自下而上分别为网络层、数据层、共识层、控制层和应用层。其中,网络层是区块链信息交互的基础,承载节点间的共识过程和数据传输,主要包括建立在基础网络之上的对等网络及其安全机制;数据层包括区块链基本数据结构及其原理;共识层保证节点数据的一致性,封装各类共识算法和驱动节点共识行为的奖惩机制;控制层包括沙盒环境、自动化脚本、智能合约和权限管理等,提供区块链可编程特性,实现对区块数据、业务数据、组织结构的控制;应用层包括区块链的相关应用场景和实践案例,通过调用控制合约提供的接口进行数据交互,由于该层次不涉及区块链原理,因此在第 5节中单独介绍。
3.1 网络层
网络层关注区块链网络的基础通信方式——对等(P2P,peer-to-peer)网络。对等网络是区别于“客户端/服务器”服务模式的计算机通信与存储架构,网络中每个节点既是数据的提供者也是数据的使用者,节点间通过直接交换实现计算机资源与信息的共享,因此每个节点地位均等。区块链网络层由组网结构、通信机制、安全机制组成。其中组网结构描述节点间的路由和拓扑关系,通信机制用于实现节点间的信息交互,安全机制涵盖对端安全和传输安全。
图2
新窗口打开|
下载原图ZIP|
生成PPT
图2
区块链层次化技术结构
1) 组网结构
对等网络的体系架构可分为无结构对等网络、结构化对等网络和混合式对等网络[9],根据节点的逻辑拓扑关系,区块链网络的组网结构也可以划分为上述3种,如图3所示。
图3
新窗口打开|
下载原图ZIP|
生成PPT
图3
区块链组网结构
无结构对等网络是指网络中不存在特殊中继节点、节点路由表的生成无确定规律、网络拓扑呈现随机图状的一类对等网络。该类网络结构松散,设计简洁,具有良好的容错性和匿名性,但由于采用洪泛机制作为信息传播方式,其可扩展性较差。典型的协议有Gnutella等。
结构化对等网络是指网络中不存在特殊中继节点、节点间根据特定算法生成路由表、网络拓扑具有严格规律的一类对等网络。该类网络实现复杂但可扩展性良好,通过结构化寻址可以精确定位节点从而实现多样化功能。常见的结构化网络以DHT (distributed hash table)网络为主,典型的算法有Chord、Kademlia等。
混合式对等网络是指节点通过分布式中继节点实现全网消息路由的一类对等网络。每个中继节点维护部分网络节点地址、文件索引等工作,共同实现数据中继的功能。典型的协议有Kazza等。
2) 通信机制
通信机制是指区块链网络中各节点间的对等通信协议,建立在 TCP/UDP 之上,位于计算机网络协议栈的应用层,如图4所示。该机制承载对等网络的具体交互逻辑,例如节点握手、心跳检测、交易和区块传播等。由于包含的协议功能不同(例如基础链接与扩展交互),本文将通信机制细分为3个层次:传播层、连接层和交互逻辑层。
传播层实现对等节点间数据的基本传输,包括2 种数据传播方式:单点传播和多点传播。单点传播是指数据在2个已知节点间直接进行传输而不经过其他节点转发的传播方式;多点传播是指接收数据的节点通过广播向邻近节点进行数据转发的传播方式,区块链网络普遍基于Gossip协议[10]实现洪泛传播。连接层用于获取节点信息,监测和改变节点间连通状态,确保节点间链路的可用性(availability)。具体而言,连接层协议帮助新加入节点获取路由表数据,通过定时心跳监测为节点保持稳定连接,在邻居节点失效等情况下为节点关闭连接等。交互逻辑层是区块链网络的核心,从主要流程上看,该层协议承载对等节点间账本数据的同步、交易和区块数据的传输、数据校验结果的反馈等信息交互逻辑,除此之外,还为节点选举、共识算法实施等复杂操作和扩展应用提供消息通路。
图4
新窗口打开|
下载原图ZIP|
生成PPT
图4
区块链网络通信机制
3) 安全机制
安全是每个系统必须具备的要素,以比特币为代表的非许可链利用其数据层和共识层的机制,依靠消耗算力的方式保证数据的一致性和有效性,没有考虑数据传输过程的安全性,反而将其建立在不可信的透明P2P网络上。随着隐私保护需求的提出,非许可链也采用了一些网络匿名通信方法,例如匿名网络Tor(the onion router)通过沿路径的层层数据加密机制来保护对端身份。许可链对成员的可信程度有更高的要求,在网络层面采取适当的安全机制,主要包括身份安全和传输安全两方面。身份安全是许可链的主要安全需求,保证端到端的可信,一般采用数字签名技术实现,对节点的全生命周期(例如节点交互、投票、同步等)进行签名,从而实现许可链的准入许可。传输安全防止数据在传输过程中遭到篡改或监听,常采用基于TLS的点对点传输和基于Hash算法的数据验证技术。
4) 研究现状
目前,区块链网络层研究主要集中在3个方向:测量优化、匿名分析与隐私保护、安全防护。
随着近年来区块链网络的爆炸式发展以及开源特点,学术界开始关注大型公有链项目的网络状况,监测并研究它们的特点,研究对象主要为比特币网络。Decker等[11]设计和实现测量工具,分析传播时延数据、协议数据和地址数据,建模分析影响比特币网络性能的网络层因素,基于此提出各自的优化方法。Fadhil等[12]提出基于事件仿真的比特币网络仿真模型,利用真实测量数据验证模型的有效性,最后提出优化机制 BCBSN,旨在设立超级节点降低网络波动。Kaneko 等[13]将区块链节点分为共识节点和验证节点,其中共识节点采用无结构组网方式,验证节点采用结构化组网方式,利用不同组网方式的优点实现网络负载的均衡。
匿名性是加密货币的重要特性之一,但从网络层视角看,区块链的匿名性并不能有效保证,因为攻击者可以利用监听并追踪 IP 地址的方式推测出交易之间、交易与公钥地址之间的关系,通过匿名隐私研究可以主动发掘安全隐患,规避潜在危害。Koshy 等[16,17]从网络拓扑、传播层协议和作恶模型3个方面对比特币网络进行建模,通过理论分析和仿真实验证明了比特币网络协议在树形组网结构下仅具备弱匿名性,在此基础上提出 Dandelion 网络策略以较低的网络开销优化匿名性,随后又提出 Dandelion++原理,以最优信息理论保证来抵抗大规模去匿名攻击。
区块链重点关注其数据层和共识层面机制,并基于普通网络构建开放的互联环境,该方式极易遭受攻击。为提高区块链网络的安全性,学术界展开研究并给出了相应的解决方案。Heilman 等[18]对比特币和以太坊网络实施日蚀攻击(eclipse attack)——通过屏蔽正确节点从而完全控制特定节点的信息来源,证实了该攻击的可行性。Apostolaki等[19]提出针对比特币网络的 BGP(border gateway protocal)劫持攻击,通过操纵自治域间路由或拦截域间流量来制造节点通信阻塞,表明针对关键数据的沿路攻击可以大大降低区块传播性能。
3.2 数据层
区块链中的“块”和“链”都是用来描述其数据结构特征的词汇,可见数据层是区块链技术体系的核心。区块链数据层定义了各节点中数据的联系和组织方式,利用多种算法和机制保证数据的强关联性和验证的高效性,从而使区块链具备实用的数据防篡改特性。除此之外,区块链网络中每个节点存储完整数据的行为增加了信息泄露的风险,隐私保护便成为迫切需求,而数据层通过非对称加密等密码学原理实现了承载应用信息的匿名保护,促进区块链应用普及和生态构建。因此,从不同应用信息的承载方式出发,考虑数据关联性、验证高效性和信息匿名性需求,可将数据层关键技术分为信息模型、关联验证结构和加密机制3类。
1) 信息模型
区块链承载了不同应用的数据(例如支付记录、审计数据、供应链信息等),而信息模型则是指节点记录应用信息的逻辑结构,主要包括UTXO (unspent transaction output)、基于账户和键值对模型3种。需要说明的是,在大部分区块链网络中,每个用户均被分配了交易地址,该地址由一对公私钥生成,使用地址标识用户并通过数字签名的方式检验交易的有效性。
UTXO是比特币交易中的核心概念,逐渐演变为区块链在金融领域应用的主要信息模型,如图5所示。每笔交易(Tx)由输入数据(Input)和输出数据(Output)组成,输出数据为交易金额(Num)和用户公钥地址(Adr),而输入数据为上一笔交易输出数据的指针(Pointer),直到该比特币的初始交易由区块链网络向节点发放。
图5
新窗口打开|
下载原图ZIP|
生成PPT
图5
UTXO信息模型
基于账户的信息模型以键值对的形式存储数据,维护着账户当前的有效余额,通过执行交易来不断更新账户数据。相比于UTXO,基于账户的信息模型与银行的储蓄账户类似,更直观和高效。
不管是UTXO还是基于账户的信息模型,都建立在更为通用的键值对模型上,因此为了适应更广泛的应用场景,键值对模型可直接用于存储业务数据,表现为表单或集合形式。该模型利于数据的存取并支持更复杂的业务逻辑,但是也存在复杂度高的问题。
2) 关联验证结构
区块链之所以具备防篡改特性,得益于链状数据结构的强关联性。该结构确定了数据之间的绑定关系,当某个数据被篡改时,该关系将会遭到破坏。由于伪造这种关系的代价是极高的,相反检验该关系的工作量很小,因此篡改成功率被降至极低。链状结构的基本数据单位是“区块(block)”,基本内容如图6所示。
图6
新窗口打开|
下载原图ZIP|
生成PPT
图6
基本区块结构
区块由区块头(Header)和区块体(Body)两部分组成,区块体包含一定数量的交易集合;区块头通过前继散列(PrevHash)维持与上一区块的关联从而形成链状结构,通过MKT(MerkleTree)生成的根散列(RootHash)快速验证区块体交易集合的完整性。因此散列算法和 MKT 是关联验证结构的关键,以下将对此展开介绍。
散列(Hash)算法也称为散列函数,它实现了明文到密文的不可逆映射;同时,散列算法可以将任意长度的输入经过变化得到固定长度的输出;最后,即使元数据有细微差距,变化后的输出也会产生显著不同。利用散列算法的单向、定长和差异放大的特征,节点通过比对当前区块头的前继散列即可确定上一区块内容的正确性,使区块的链状结构得以维系。区块链中常用的散列算法包括SHA256等。
MKT包括根散列、散列分支和交易数据。MKT首先对交易进行散列运算,再对这些散列值进行分组散列,最后逐级递归直至根散列。MKT 带来诸多好处:一方面,对根散列的完整性确定即间接地实现交易的完整性确认,提升高效性;另一方面,根据交易的散列路径(例如 Tx1:Hash2、Hash34)可降低验证某交易存在性的复杂度,若交易总数为N,那么MKT可将复杂度由N降为lbN。除此之外,还有其他数据结构与其配合使用,例如以太坊通过MPT(Merkle Patricia tree)——PatriciaTrie 和MerkleTree混合结构,高效验证其基于账户的信息模型数据。
此外,区块头中还可根据不同项目需求灵活添加其他信息,例如添加时间戳为区块链加入时间维度,形成时序记录;添加记账节点标识,以维护成块节点的权益;添加交易数量,进一步提高区块体数据的安全性。
3) 加密机制
由上述加密货币原理可知,经比特币演变的区块链技术具备与生俱来的匿名性,通过非对称加密等技术既保证了用户的隐私又检验了用户身份。非对称加密技术是指加密者和解密者利用2个不同秘钥完成加解密,且秘钥之间不能相互推导的加密机制。常用的非对称加密算法包括 RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)等。对应图5,Alice 向 Bob 发起交易 Tx2,Alice使用Bob的公钥对交易签名,仅当Bob使用私钥验证该数字签名时,才有权利创建另一笔交易,使自身拥有的币生效。该机制将公钥作为基础标识用户,使用户身份不可读,一定程度上保护了隐私。
4) 研究现状
数据层面的研究方向集中在高效验证、匿名分析、隐私保护3个方面。
高效验证的学术问题源于验证数据结构(ADS,authenticated data structure),即利用特定数据结构快速验证数据的完整性,实际上 MKT 也是其中的一种。为了适应区块链数据的动态性(dynamical)并保持良好性能,学术界展开了研究。Reyzin等[20]基于AVL树形结构提出AVL+,并通过平衡验证路径、缺省堆栈交易集等机制,简化轻量级节点的区块头验证过程。Zhang等[21]提出GEM2-tree结构,并对其进行优化提出 GEM2כ-tree 结构,通过分解单树结构、动态调整节点计算速度、扩展数据索引等机制降低以太坊节点计算开销。
区块数据直接承载业务信息,因此区块数据的匿名关联性分析更为直接。Reid等[22]将区块数据建模为事务网络和用户网络,利用多交易数据的用户指向性分析成功降低网络复杂度。Meiklejohn等[23]利用启发式聚类方法分析交易数据的流动特性并对用户进行分组,通过与这些服务的互动来识别主要机构的比特币地址。Awan 等[24]使用优势集(dominant set)方法对区块链交易进行自动分类,从而提高分析准确率。
隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私。Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性。非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成。
3.3 共识层
区块链网络中每个节点必须维护完全相同的账本数据,然而各节点产生数据的时间不同、获取数据的来源未知,存在节点故意广播错误数据的可能性,这将导致女巫攻击[29]、双花攻击[30]等安全风险;除此之外,节点故障、网络拥塞带来的数据异常也无法预测。因此,如何在不可信的环境下实现账本数据的全网统一是共识层解决的关键问题。实际上,上述错误是拜占庭将军问题(the Byzantine generals problem)[31]在区块链中的具体表现,即拜占庭错误——相互独立的组件可以做出任意或恶意的行为,并可能与其他错误组件产生协作,此类错误在可信分布式计算领域被广泛研究。
状态机复制(state-machine replication)是解决分布式系统容错问题的常用理论。其基本思想为:任何计算都表示为状态机,通过接收消息来更改其状态。假设一组副本以相同的初始状态开始,并且能够就一组公共消息的顺序达成一致,那么它们可以独立进行状态的演化计算,从而正确维护各自副本之间的一致性。同样,区块链也使用状态机复制理论解决拜占庭容错问题,如果把每个节点的数据视为账本数据的副本,那么节点接收到的交易、区块即为引起副本状态变化的消息。状态机复制理论实现和维持副本的一致性主要包含2个要素:正确执行计算逻辑的确定性状态机和传播相同序列消息的共识协议。其中,共识协议是影响容错效果、吞吐量和复杂度的关键,不同安全性、可扩展性要求的系统需要的共识协议各有不同。学术界普遍根据通信模型和容错类型对共识协议进行区分[32],因此严格地说,区块链使用的共识协议需要解决的是部分同步(partial synchrony)模型[33]下的拜占庭容错问题。
区块链网络中主要包含PoX(poof of X)[34]、BFT(byzantine-fault tolerant)和 CFT(crash-fault tolerant)类基础共识协议。PoX 类协议是以 PoW (proof of work)为代表的基于奖惩机制驱动的新型共识协议,为了适应数据吞吐量、资源利用率和安全性的需求,人们又提出PoS(proof of stake)、PoST (proof of space-time)等改进协议。它们的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错。BFT类协议是指解决拜占庭容错问题的传统共识协议及其改良协议,包括PBFT、BFT-SMaRt、Tendermint等。CFT类协议用于实现崩溃容错,通过身份证明等手段规避节点作恶的情况,仅考虑节点或网络的崩溃(crash)故障,主要包括Raft、Paxos、Kafka等协议。
非许可链和许可链的开放程度和容错需求存在差异,共识层面技术在两者之间产生了较大区别。具体而言,非许可链完全开放,需要抵御严重的拜占庭风险,多采用PoX、BFT类协议并配合奖惩机制实现共识。许可链拥有准入机制,网络中节点身份可知,一定程度降低了拜占庭风险,因此可采用BFT类协议、CFT类协议构建相同的信任模型[35]。
限于篇幅原因,本节仅以 PoW、PBFT、Raft为切入进行3类协议的分析。
1) PoX类协议
PoW也称为Nakamoto协议,是比特币及其衍生项目使用的核心共识协议,如图7所示。
图7
新窗口打开|
下载原图ZIP|
生成PPT
图7
PoW协议示意
该协议在区块链头结构中加入随机数Nonce,并设计证明依据:为生成新区块,节点必须计算出合适的 Nonce 值,使新生成的区块头经过双重SHA256 运算后小于特定阈值。该协议的整体流程为:全网节点分别计算证明依据,成功求解的节点确定合法区块并广播,其余节点对合法区块头进行验证,若验证无误则与本地区块形成链状结构并转发,最终达到全网共识。PoW是随机性协议,任何节点都有可能求出依据,合法区块的不唯一将导致生成分支链,此时节点根据“最长链原则”选择一定时间内生成的最长链作为主链而抛弃其余分支链,从而使各节点数据最终收敛。
PoW协议采用随机性算力选举机制,实现拜占庭容错的关键在于记账权的争夺,目前寻找证明依据的方法只有暴力搜索,其速度完全取决于计算芯片的性能,因此当诚实节点数量过半,即“诚实算力”过半时,PoW便能使合法分支链保持最快的增长速度,也即保证主链一直是合法的。PoW是一种依靠饱和算力竞争纠正拜占庭错误的共识协议,关注区块产生、传播过程中的拜占庭容错,在保证防止双花攻击的同时也存在资源浪费、可扩展性差等问题。
2) BFT类协议
PBFT是 BFT经典共识协议,其主要流程如图8 所示。PBFT将节点分为主节点和副节点,其中主节点负责将交易打包成区块,副节点参与验证和转发,假设作恶节点数量为f。PBFT共识主要分为预准备、准备和接受3个阶段,主节点首先收集交易后排序并提出合法区块提案;其余节点先验证提案的合法性,然后根据区块内交易顺序依次执行并将结果摘要组播;各节点收到2f个与自身相同的摘要后便组播接受投票;当节点收到超过2f+1个投票时便存储区块及其产生的新状态[36]。
图8
新窗口打开|
下载原图ZIP|
生成PPT
图8
PBFT协议示意
PBFT 协议解决消息传播过程的拜占庭容错,由于算法复杂度为 O(n2)且存在确定性的主节点选举规则,PBFT 仅适用于节点数量少的小型许可链系统。
3) CFT类协议
Raft[37]是典型的崩溃容错共识协议,以可用性强著称。Raft将节点分为跟随节点、候选节点和领导节点,领导节点负责将交易打包成区块,追随节点响应领导节点的同步指令,候选节点完成领导节点的选举工作。当网络运行稳定时,只存在领导节点和追随节点,领导节点向追随节点推送区块数据从而实现同步。节点均设置生存时间决定角色变化周期,领导节点的心跳信息不断重置追随节点的生存时间,当领导节点发生崩溃时,追随节点自动转化为候选节点并进入选举流程,实现网络自恢复。
Raft协议实现崩溃容错的关键在于领导节点的自选举机制,部分许可链选择降低可信需求,将拜占庭容错转换为崩溃容错,从而提升共识速度。
4) 奖惩机制
奖惩机制包括激励机制与惩罚策略,其中激励机制是为了弥补节点算力消耗、平衡协议运行收益比的措施,当节点能够在共识过程中获得收益时才会进行记账权的争夺,因此激励机制利用经济效益驱动各共识协议可持续运行。激励机制一般基于价值均衡理论设计,具有代表性的机制包括PPLNS、PPS等。为了实现收益最大化,节点可能采用不诚实的运行策略(如扣块攻击、自私挖矿等),损害了诚实节点的利益,惩罚策略基于博弈论等理论对节点进行惩罚,从而纠正不端节点的行为,维护共识可持续性。
5) 研究现状
随着可扩展性和性能需求的多样化发展,除了传统的BFT、CFT协议和PoX协议衍生研究,还产生了混合型协议(Hybrid)——主要为 PoX类协议混合以及PoX-BFT协议混合。因此本节从PoX类、BFT类以及Hybrid类协议归纳共识层研究进展。
如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错。uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费。PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块。PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举。Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性。PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用。
BFT协议有较长的发展史,在区块链研究中被赋予了新的活力。SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识。Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性。HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致。LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能。
Hybrid 类协议是研究趋势之一。PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享。PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力。ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延。Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份。
3.4 控制层
区块链节点基于对等通信网络与基础数据结构进行区块交互,通过共识协议实现数据一致,从而形成了全网统一的账本。控制层是各类应用与账本产生交互的中枢,如果将账本比作数据库,那么控制层提供了数据库模型,以及相应封装、操作的方法。具体而言,控制层由处理模型、控制合约和执行环境组成。处理模型从区块链系统的角度分析和描述业务/交易处理方式的差异。控制合约将业务逻辑转化为交易、区块、账本的具体操作。执行环境为节点封装通用的运行资源,使区块链具备稳定的可移植性。
1) 处理模型
账本用于存储全部或部分业务数据,那么依据该数据的分布特征可将处理模型分为链上(on-chain)和链下(off-chain)2种。
链上模型是指业务数据完全存储在账本中,业务逻辑通过账本的直接存取实现数据交互。该模型的信任基础建立在强关联性的账本结构中,不仅实现防篡改而且简化了上层控制逻辑,但是过量的资源消耗与庞大的数据增长使系统的可扩展性达到瓶颈,因此该模型适用于数据量小、安全性强、去中心化和透明程度高的业务。
链下模型是指业务数据部分或完全存储在账本之外,只在账本中存储指针以及其他证明业务数据存在性、真实性和有效性的数据。该模型以“最小化信任成本”为准则,将信任基础建立在账本与链下数据的证明机制中,降低账本构建成本。由于与公开的账本解耦,该模型具有良好的隐私性和可拓展性,适用于去中心化程度低、隐私性强、吞吐量大的业务。
2) 控制合约
区块链中控制合约经历了2个发展阶段,首先是以比特币为代表的非图灵完备的自动化脚本,用于锁定和解锁基于UTXO信息模型的交易,与强关联账本共同克服了双花等问题,使交易数据具备流通价值。其次是以以太坊为代表的图灵完备的智能合约,智能合约是一种基于账本数据自动执行的数字化合同,由开发者根据需求预先定义,是上层应用将业务逻辑编译为节点和账本操作集合的关键。智能合约通过允许相互不信任的参与者在没有可信第三方的情况下就复杂合同的执行结果达成协议,使合约具备可编程性,实现业务逻辑的灵活定义并扩展区块链的使用。
3) 执行环境
执行环境是指执行控制合约所需要的条件,主要分为原生环境和沙盒环境。原生环境是指合约与节点系统紧耦合,经过源码编译后直接执行,该方式下合约能经历完善的静态分析,提高安全性。沙盒环境为节点运行提供必要的虚拟环境,包括网络通信、数据存储以及图灵完备的计算/控制环境等,在虚拟机中运行的合约更新方便、灵活性强,其产生的漏洞也可能造成损失。
4) 研究现状
控制层的研究方向主要集中在可扩展性优化与安全防护2个方面。
侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷。Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花。Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余。分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载。ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证。OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性。区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障。上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案。实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付。Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认。
一方面,沙盒环境承载了区块链节点运行条件,针对虚拟机展开的攻击更为直接;另一方面,智能合约直接对账本进行操作,其漏洞更易影响业务运行,因此控制层的安全防护研究成为热点。Luu等[59]分析了运行于EVM中的智能合约安全性,指出底层平台的分布式语义差异带来的安全问题。Brent 等[60]提出智能合约安全分析框架 Vandal,将EVM 字节码转换为语义逻辑关,为分析合约安全漏洞提供便利。Jiang 等[61]预先定义用于安全漏洞的特征,然后模拟执行大规模交易,通过分析日志中的合约行为实现漏洞检测。
4 技术选型分析
区别于其他技术,区块链发展过程中最显著的特点是与产业界紧密结合,伴随着加密货币和分布式应用的兴起,业界出现了许多区块链项目。这些项目是区块链技术的具体实现,既有相似之处又各具特点,本节将根据前文所述层次化结构对比特币、以太坊和超级账本Fabric项目进行分析,然后简要介绍其他代表性项目并归纳和对比各项目的技术选型及特点。
4.1 比特币
比特币是目前规模最大、影响范围最广的非许可链开源项目。图9为比特币项目以账本为核心的运行模式,也是所有非许可链项目的雏形。比特币网络为用户提供兑换和转账业务,该业务的价值流通媒介由账本确定的交易数据——比特币支撑。为了保持账本的稳定和数据的权威性,业务制定奖励机制,即账本为节点产生新的比特币或用户支付比特币,以此驱动节点共同维护账本。
图9
新窗口打开|
下载原图ZIP|
生成PPT
图9
比特币运行模式
比特币网络主要由2种节点构成:全节点和轻节点。全节点是功能完备的区块链节点,而轻节点不存储完整的账本数据,仅具备验证与转发功能。全节点也称为矿工节点,计算证明依据的过程被称为“挖矿”,目前全球拥有近 1 万个全节点;矿池则是依靠奖励分配策略将算力汇集起来的矿工群;除此之外,还有用于存储私钥和地址信息、发起交易的客户端(钱包)。
1) 网络层
比特币在网络层采用非结构化方式组网,路由表呈现随机性。节点间则采用多点传播方式传递数据,曾基于Gossip协议实现,为提高网络的抗匿名分析能力改为基于Diffusion协议实现[33]。节点利用一系列控制协议确保链路的可用性,包括版本获取(Vetsion/Verack)、地址获取(Addr/GetAddr)、心跳信息(PING/PONG)等。新节点入网时,首先向硬编码 DNS 节点(种子节点)请求初始节点列表;然后向初始节点随机请求它们路由表中的节点信息,以此生成自己的路由表;最后节点通过控制协议与这些节点建立连接,并根据信息交互的频率更新路由表中节点时间戳,从而保证路由表中的节点都是活动的。交互逻辑层为建立共识交互通道,提供了区块获取(GetBlock)、交易验证(MerkleBlock)、主链选择(CmpctBlock)等协议;轻节点只需要进行简单的区块头验证,因此通过头验证(GetHeader/Header)协议和连接层中的过滤设置协议指定需要验证的区块头即可建立简单验证通路。在安全机制方面,比特币网络可选择利用匿名通信网络Tor作为数据传输承载,通过沿路径的层层数据加密机制来保护对端身份。
2) 数据层
比特币数据层面的技术选型已经被广泛研究,使用UTXO信息模型记录交易数据,实现所有权的简单、有效证明,利用 MKT、散列函数和时间戳实现区块的高效验证并产生强关联性。在加密机制方面,比特币采用参数为Secp256k1的椭圆曲线数字签名算法(ECDSA,elliptic curve digital signature algorithm)生成用户的公私钥,钱包地址则由公钥经过双重散列、Base58Check 编码等步骤生成,提高了可读性。
3) 共识层
比特币采用 PoW 算法实现节点共识,该算法证明依据中的阈值设定可以改变计算难度。计算难度由每小时生成区块的平均块数决定,如果生成得太快,难度就会增加。该机制是为了应对硬件升级或关注提升引起的算力变化,保持证明依据始终有效。目前该阈值被设定为10 min产出一个区块。除此之外,比特币利用奖惩机制保证共识的可持续运行,主要包括转账手续费、挖矿奖励和矿池分配策略等。
4) 控制层
比特币最初采用链上处理模型,并将控制语句直接记录在交易中,使用自动化锁定/解锁脚本验证UTXO模型中的比特币所有权。由于可扩展性和确认时延的限制,比特币产生多个侧链项目如Liquid、RSK、Drivechain等,以及链下处理项目Lightning Network等,从而优化交易速度。
4.2 以太坊
以太坊是第一个以智能合约为基础的可编程非许可链开源平台项目,支持使用区块链网络构建分布式应用,包括金融、音乐、游戏等类型;当满足某些条件时,这些应用将触发智能合约与区块链网络产生交互,以此实现其网络和存储功能,更重要的是衍生出更多场景应用和价值产物,例如以太猫,利用唯一标识为虚拟猫赋予价值;GitCoin,众筹软件开发平台等。
1) 网络层
以太坊底层对等网络协议簇称为DEVP2P,除了满足区块链网络功能外,还满足与以太坊相关联的任何联网应用程序的需求。DEVP2P将节点公钥作为标识,采用 Kademlia 算法计算节点的异或距离,从而实现结构化组网。DEVP2P主要由3种协议组成:节点发现协议RLPx、基础通信协议Wire和扩展协议Wire-Sub。节点间基于Gossip实现多点传播;新节点加入时首先向硬编码引导节点(bootstrap node)发送入网请求;然后引导节点根据Kademlia 算法计算与新节点逻辑距离最近的节点列表并返回;最后新节点向列表中节点发出握手请求,包括网络版本号、节点ID、监听端口等,与这些节点建立连接后则使用Ping/Pong机制保持连接。Wire子协议构建了交易获取、区块同步、共识交互等逻辑通路,与比特币类似,以太坊也为轻量级钱包客户端设计了简易以太坊协议(LES,light ethereum subprotocol)及其变体PIP。安全方面,节点在RLPx协议建立连接的过程中采用椭圆曲线集成加密方案(ECIES)生成公私钥,用于传输共享对称密钥,之后节点通过共享密钥加密承载数据以实现数据传输保护。
2) 数据层
以太坊通过散列函数维持区块的关联性,采用MPT实现账户状态的高效验证。基于账户的信息模型记录了用户的余额及其他 ERC 标准信息,其账户类型主要分为2类:外部账户和合约账户;外部账户用于发起交易和创建合约,合约账户用于在合约执行过程中创建交易。用户公私钥的生成与比特币相同,但是公钥经过散列算法Keccak-256计算后取20 B作为外部账户地址。
3) 共识层
以太坊采用 PoW 共识,将阈值设定为 15 s产出一个区块,计划在未来采用PoS或Casper共识协议。较低的计算难度将导致频繁产生分支链,因此以太坊采用独有的奖惩机制——GHOST 协议,以提高矿工的共识积极性。具体而言,区块中的散列值被分为父块散列和叔块散列,父块散列指向前继区块,叔块散列则指向父块的前继。新区块产生时,GHOST 根据前 7 代区块的父/叔散列值计算矿工奖励,一定程度弥补了分支链被抛弃时浪费的算力。
4) 控制层
每个以太坊节点都拥有沙盒环境 EVM,用于执行Solidity语言编写的智能合约;Solidity语言是图灵完备的,允许用户方便地定义自己的业务逻辑,这也是众多分布式应用得以开发的前提。为优化可扩展性,以太坊拥有侧链项目 Loom、链下计算项目Plasma,而分片技术已于2018年加入以太坊源码。
4.3 超级账本Fabric
超级账本是Linux基金会旗下的开源区块链项目,旨在提供跨行业区块链解决方案。Fabric 是超级账本子项目之一,也是影响最广的企业级可编程许可链项目;在已知的解决方案中,Fabric 被应用于供应链、医疗和金融服务等多种场景。
1) 网络层
Fabric 网络以组织为单位构建节点集群,采用混合式对等网络组网;每个组织中包括普通节点和锚节点(anchor peer),普通节点完成组织内的消息路由,锚节点负责跨组织的节点发现与消息路由。Fabric网络传播层基于Gossip实现,需要使用配置文件初始化网络,网络生成后各节点将定期广播存活信息,其余节点根据该信息更新路由表以保持连接。交互逻辑层采用多通道机制,即相同通道内的节点才能进行状态信息交互和区块同步。Fabric 为许可链,因此在网络层采取严苛的安全机制:节点被颁发证书及密钥对,产生PKI-ID进行身份验证;可选用 TLS 双向加密通信;基于多通道的业务隔离;可定义策略指定通道内的某些节点对等传输私有数据。
2) 数据层
Fabric的区块中记录读写集(read-write set)描述交易执行时的读写过程。该读写集用于更新状态数据库,而状态数据库记录了键、版本和值组成的键值对,因此属于键值对信息模型。一方面,散列函数和 MerkleTree 被用作高效关联结构的实现技术;另一方面,节点还需根据键值验证状态数据库与读写集中的最新版本是否一致。许可链场景对匿名性的要求较低,但对业务数据的隐私性要求较高,因此Fabric 1.2版本开始提供私有数据集(PDC,private data collection)功能。
3) 共识层
Fabric在0.6版本前采用PBFT 共识协议,但是为了提高交易吞吐量,Fabric 1.0 选择降低安全性,将共识过程分解为排序和验证2种服务,排序服务采用CFT类协议Kafka、Raft(v1.4之后)完成,而验证服务进一步分解为读写集验证与多签名验证,最大程度提高了共识速度。由于Fabric针对许可链场景,参与方往往身份可知且具有相同的合作意图,因此规避了节点怠工与作恶的假设,不需要奖惩机制调节。
4) 控制层
Fabric 对于扩展性优化需求较少,主要得益于共识层的优化与许可链本身参与节点较少的前提,因此主要采用链上处理模型,方便业务数据的存取;而 PDC 中仅将私有数据散列值上链的方式则属于链下处理模型,智能合约可以在本地进行数据存取。Fabric 节点采用模块化设计,基于 Docker构建模块执行环境;智能合约在Fabric中被称为链码,使用GO、Javascript和Java语言编写,也是图灵完备的。
4.4 其他项目
除了上述3种区块链基础项目外,产业界还有许多具有代表性的项目,如表1所示。
5 区块链应用研究
区块链技术有助于降低金融机构间的审计成本,显著提高支付业务的处理速度及效率,可应用于跨境支付等金融场景。除此之外,区块链还应用于产权保护、信用体系建设、教育生态优化、食品安全监管、网络安全保障等非金融场景。
根据这些场景的应用方式以及区块链技术特点,可将区块链特性概括为如下几点。1) 去中心化。节点基于对等网络建立通信和信任背书,单一节点的破坏不会对全局产生影响。2) 不可篡改。账本由全体节点维护,群体协作的共识过程和强关联的数据结构保证节点数据一致且基本无法被篡改,进一步使数据可验证和追溯。3) 公开透明。除私有数据外,链上数据对每个节点公开,便于验证数据的存在性和真实性。4) 匿名性。多种隐私保护机制使用户身份得以隐匿,即便如此也能建立信任基础。5) 合约自治。预先定义的业务逻辑使节点可以基于高可信的账本数据实现自治,在人-人、人-机、机-机交互间自动化执行业务。
鉴于上述领域的应用在以往研究中均有详细描述,本文将主要介绍区块链在智慧城市、边缘计算和人工智能领域的前沿应用研究现状。
表1
表1
代表性区块链项目
技术选型CordaQuorumLibraBlockstackFilecoinZcash控制合约Kotlin,JavaGOMoveClarity非图灵完备非图灵完备非图灵完备执行环境JVMEVMMVM源码编译源码编译源码编译处理模型链上链上/链下(私有数据)链上链下(虚拟链)链下(IPFS)链上奖惩机制——Libra coinsStacks tokenFilecoinZcash/Turnstiles共识算法Notary 机制/RAFT,BFT-SMaRtQuorum-Chain,RAFTLibraBFTTunable Proofs,proof-of-burnPoRep,PoETPoW信息模型UTXO基于账户基于账户基于账户基于账户UTXO关联验证结构散列算法MKT散列算法MPT散列算法MKT散列算法Merklized Adaptive Radix Forest (MARF)散列算法MKT散列算法MKT加密机制Tear-offs机制、混合密钥基于EnclaveSHA3-256/EdDSA基于Gaia/Blockstack AuthSECP256K1/BLSzk-SNARK组网方式混合型结构化混合型无结构结构化/无结构无结构通信机制AMQP1.0/单点传播Wire/GossipNoise-ProtocolFramework/GossipAtlas/GossipLibp2p/GossipBitcoin-Core/Gossip安全机制Corda加密套件/TLS证书/HTTPSDiffie-HellmanSecure BackboneTLSTor区块链类型许可链许可链许可链非许可链非许可链非许可链特点只允许对实际参与给定交易的各方进行信息访问和验证功能基于以太坊网络提供公共交易和私有交易2种交互渠道稳定、快速的交易网络剔除中心服务商的、可扩展的分布式数据存储设施,旨在保护隐私数据激励机制驱动的存储资源共享生态基于比特币网络提供零知识证明的隐私保护应用场景金融业务平台分布式应用加密货币互联网基础设施文件存储与共享加密货币
新窗口打开|
下载CSV
5.1 智慧城市
智慧城市是指利用 ICT 优化公共资源利用效果、提高居民生活质量、丰富设施信息化能力的研究领域,该领域包括个人信息管理、智慧医疗、智慧交通、供应链管理等具体场景。智慧城市强调居民、设施等各类数据的采集、分析与使能,数据可靠性、管理透明化、共享可激励等需求为智慧城市带来了许多技术挑战。区块链去中心化的交互方式避免了单点故障、提升管理公平性,公开透明的账本保证数据可靠及可追溯性,多种匿名机制利于居民隐私的保护,因此区块链有利于问题的解决。Hashemi等[62]将区块链用于权限数据存储,构建去中心化的个人数据接入控制模型;Bao等[63]利用区块链高效认证和管理用户标识,保护车主的身份、位置、车辆信息等个人数据。
5.2 边缘计算
边缘计算是一种将计算、存储、网络资源从云平台迁移到网络边缘的分布式信息服务架构,试图将传统移动通信网、互联网和物联网等业务进行深度融合,减少业务交付的端到端时延,提升用户体验。安全问题是边缘计算面临的一大技术挑战,一方面,边缘计算的层次结构中利用大量异构终端设备提供用户服务,这些设备可能产生恶意行为;另一方面,服务迁移过程中的数据完整性和真实性需要得到保障。区块链在这种复杂的工作环境和开放的服务架构中能起到较大作用。首先,区块链能够在边缘计算底层松散的设备网络中构建不可篡改的账本,提供设备身份和服务数据验证的依据。其次,设备能在智能合约的帮助下实现高度自治,为边缘计算提供设备可信互操作基础。Samaniego等[64]提出了一种基于区块链的虚拟物联网资源迁移架构,通过区块链共享资源数据从而保障安全性。Stanciu[65]结合软件定义网络(SDN)、雾计算和区块链技术提出分布式安全云架构,解决雾节点中SDN控制器流表策略的安全分发问题。Ziegler等[66]基于 Plasma 框架提出雾计算场景下的区块链可扩展应用方案,提升雾计算网关的安全性。
5.3 人工智能
人工智能是一类智能代理的研究,使机器感知环境/信息,然后进行正确的行为决策,正确是指达成人类预定的某些目标。人工智能的关键在于算法,而大部分机器学习和深度学习算法建立于体积庞大的数据集和中心化的训练模型之上,该方式易受攻击或恶意操作使数据遭到篡改,其后果为模型的不可信与算力的浪费。此外,数据采集过程中无法确保下游设备的安全性,无法保证数据来源的真实性与完整性,其后果将在自动驾驶等场景中被放大。区块链不可篡改的特性可以实现感知和训练过程的可信。另外,去中心化和合约自治特性为人工智能训练工作的分解和下放奠定了基础,保障安全的基础上提高计算效率。Kim等[67]利用区块链验证联合学习框架下的分发模型的完整性,并根据计算成本提供相应的激励,优化整体学习效果。Bravo-Marquez 等[68]提出共识机制“学习证明”以减轻PoX类共识的计算浪费,构建公共可验证的学习模型和实验数据库。
6 技术挑战与研究展望
6.1 层次优化与深度融合
区块链存在“三元悖论”——安全性、扩展性和去中心化三者不可兼得,只能依靠牺牲一方的效果来满足另外两方的需求。以比特币为代表的公链具有较高的安全性和完全去中心化的特点,但是资源浪费等问题成为拓展性优化的瓶颈。尽管先后出现了PoS、BFT等共识协议优化方案,或侧链、分片等链上处理模型,或Plasma、闪电网络等链下扩展方案,皆是以部分安全性或去中心化为代价的。因此,如何将区块链更好地推向实际应用很大程度取决于三元悖论的解决,其中主要有2种思路。
1) 层次优化
区块链层次化结构中每层都不同程度地影响上述3种特性,例如网络时延、并行读写效率、共识速度和效果、链上/链下模型交互机制的安全性等,对区块链的优化应当从整体考虑,而不是单一层次。
网络层主要缺陷在于安全性,可拓展性则有待优化。如何防御以 BGP 劫持为代表的网络攻击将成为区块链底层网络的安全研究方向[19]。信息中心网络将重塑区块链基础传输网络,通过请求聚合和数据缓存减少网内冗余流量并加速通信传输[69]。相比于数据层和共识层,区块链网络的关注度较低,但却是影响安全性、可拓展性的基本因素。
数据层的优化空间在于高效性,主要为设计新的数据验证结构与算法。该方向可以借鉴计算机研究领域的多种数据结构理论与复杂度优化方法,寻找适合区块链计算方式的结构,甚至设计新的数据关联结构。实际上相当一部分项目借鉴链式结构的思想开辟新的道路,例如压缩区块空间的隔离见证、有向无环图(DAG)中并行关联的纠缠结构(Tangle),或者Libra项目采用的状态树。
共识机制是目前研究的热点,也是同时影响三元特性的最难均衡的层次。PoW牺牲可拓展性获得完全去中心化和安全性,PoS高效的出块方式具备可扩展性但产生了分叉问题,POA结合两者做到了3种特性的均衡。以此为切入的Hybrid类共识配合奖惩机制的机动调节取得了较好效果,成为共识研究的过渡手段,但是如何做到三元悖论的真正突破还有待研究。
控制层面是目前可扩展性研究的热点,其优势在于不需要改变底层的基础实现,能够在短期内应用,集中在产业界的区块链项目中。侧链具有较好的灵活性但操作复杂度高,分片改进了账本结构但跨分片交互的安全问题始终存在,而链下处理模型在安全方面缺少理论分析的支撑。因此,三元悖论的解决在控制层面具有广泛的研究前景。
2) 深度融合
如果将层次优化称为横向优化,那么深度融合即为根据场景需求而进行的纵向优化。一方面,不同场景的三元需求并不相同,例如接入控制不要求完全去中心化,可扩展性也未遇到瓶颈,因此可采用BFT类算法在小范围构建联盟链。另一方面,区块链应用研究从简单的数据上链转变为链下存储、链上验证,共识算法从 PoW 转变为场景结合的服务证明和学习证明,此外,结合 5G 和边缘计算可将网络和计算功能移至网络边缘,节约终端资源。这意味着在严格的场景建模下,区块链的层次技术选型将与场景特点交叉创新、深度融合,具有较为广阔的研究前景。
6.2 隐私保护
加密货币以匿名性著称,但是区块链以非对称加密为基础的匿名体系不断受到挑战。反匿名攻击从身份的解密转变为行为的聚类分析,不仅包括网络流量的IP聚类,还包括交易数据的地址聚类、交易行为的启发式模型学习,因此大数据分析技术的发展使区块链隐私保护思路发生转变。已有Tor网络、混币技术、零知识证明、同态加密以及各类复杂度更高的非对称加密算法被提出,但是各方法仍有局限,未来将需要更为高效的方法。此外,随着区块链系统的可编程化发展,内部复杂性将越来越高,特别是智能合约需要更严格、有效的代码检测方法,例如匿名性检测、隐私威胁预警等。
6.3 工业区块链
工业区块链是指利用区块链夯实工业互联网中数据的流通和管控基础、促进价值转换的应用场景,具有较大的研究前景。
工业互联网是面向制造业数字化、网络化、智能化需求,构建基于海量数据采集、汇聚、分析的服务体系,支撑制造资源泛在连接、弹性供给、高效配置的重要基础设施。“工业互联网平台”是工业互联网的核心,通过全面感知、实时分析、科学决策、精准执行的逻辑闭环,实现工业全要素、全产业链、全价值链的全面贯通,培育新的模式和业态。
可以看到,工业互联网与物联网、智慧城市、消费互联网等场景应用存在内在关联,例如泛在连接、数据共享和分析、电子商务等,那么其学术问题与技术实现必然存在关联性。区块链解决了物联网中心管控架构的单点故障问题,克服泛在感知设备数据的安全性和隐私性挑战,为智慧城市场景的数据共享、接入控制等问题提供解决方法,为激励资源共享构建了新型互联网价值生态。尽管工业互联网作为新型的产业生态系统,其技术体系更复杂、内涵更丰富,但是不难想象,区块链同样有利于工业互联网的发展。
“平台+区块链”能够通过分布式数据管理模式,降低数据存储、处理、使用的管理成本,为工业用户在工业 APP 选择和使用方面搭建起更加可信的环境,实现身份认证及操作行为追溯、数据安全存储与可靠传递。能够通过产品设计参数、质量检测结果、订单信息等数据“上链”,实现有效的供应链全要素追溯与协同服务。能够促进平台间数据交易与业务协同,实现跨平台交易结算,带动平台间的数据共享与知识复用,促进工业互联网平台间互联互通。
当然,工业是关乎国计民生的产业,将区块链去中心化、匿名化等特性直接用于工业互联网是不可取的,因此需要研究工业区块链管理框架,实现区块链的可管可控,在一定范围内发挥其安全优势,并对工业互联网的运转提供正向激励。
7 结束语
区块链基于多类技术研究的成果,以低成本解决了多组织参与的复杂生产环境中的信任构建和隐私保护等问题,在金融、教育、娱乐、版权保护等场景得到了较多应用,成为学术界的研究热点。比特币的出现重塑了人们对价值的定义,伴随着产业界的呼声,区块链技术得到了快速发展,而遵循区块链层次化分析方法,能够直观地区别各项目的技术路线和特点,为优化区块链技术提供不同观察视角,并为场景应用的深度融合创造条件,促进后续研究。未来的发展中,区块链将成为更为基础的信任支撑技术,在产业互联网等更广阔的领域健康、有序地发展。
The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。
参考文献
View Option
原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[1]
袁勇, 王飞跃 . 区块链技术发展现状与展望[J]. 自动化学报, 2016,42(4): 481-494.
[本文引用: 1]
YUAN Y , WANG F Y . Blockchain:the state of the art and future trends[J]. Acta Automatica Sinica, 2016,42(4): 481-494.
[本文引用: 1]
[2]
邵奇峰, 张召, 朱燕超 ,等. 企业级区块链技术综述[J]. 软件学报, 2019,30(9): 2571-2592.
[本文引用: 1]
SHAO Q F , ZHANG Z , ZHU Y C ,et al. Survey of enterprise blockchains[J]. 2019,30(9): 2571-2592.
[本文引用: 1]
[3]
YANG W , AGHASIAN E , GARG S ,et al. A survey on blockchain-based internet service architecture:requirements,challenges,trends,and future[J]. IEEE Access, 2019,7: 75845-75872.
[本文引用: 1]
[4]
韩璇, 袁勇, 王飞跃 . 区块链安全问题:研究现状与展望[J]. 自动化学报, 2019,45(1): 208-227.
[本文引用: 1]
HAN X , YUAN Y , WANG F Y . Security problems on blockchain:the state of the art and future trends[J]. Acta Automatica Sinica, 2016,45(1): 208-227.
[本文引用: 1]
[5]
ALI M , VECCHIO M , PINCHEIRA M ,et al. Applications of blockchains in the Internet of things:a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2019,21: 1676-1717.
[本文引用: 1]
[6]
CHAUM D . Blind signature system[M]. Advances in Cryptology: Proceedings of Crypto 83.Springer USPress, 1984.
[本文引用: 1]
[7]
LAW L , SABEET S , SOLINAS J . How to make a mint:the cryptography of anonymous electronic cash[J]. The American University Law Review, 1997,46: 1131-1162.
[本文引用: 1]
[8]
JAKOBSSON M , JUELS A . Proofs of work and bread pudding protocols[C]// IFIP TC6/TC11 Joint Working Conference on Communications and Multimedia Security. IFIP, 1999: 258-272.
[本文引用: 1]
[9]
王学龙, 张璟 . P2P 关键技术研究综述[J]. 计算机应用研究, 2010,27(3): 801-805.
[本文引用: 1]
WANG X L , ZHANG J . Survey on peer-to-peer key technologies[J]. Application Research of Computers, 2010,27(3): 801-805.
[本文引用: 1]
[10]
DEMERS A , GREENE D , HOUSER C ,et al. Epidemic algorithms for replicated database maintenance[J]. ACM SIGOPS Operating Systems Review, 1988,22: 8-32.
[本文引用: 1]
[11]
DECKER C , WATTENHOFER R . Information propagation in the bitcoin network[C]// IEEE Thirteenth International Conference on Peer-to-peer Computing. IEEE, 2013: 1-10.
[本文引用: 1]
[12]
FADHIL M , OWENSON G , ADDA M . Locality based approach to improve propagation delay on the bitcoin peer-to-peer network[C]// 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). IEEE, 2017: 556-559.
[本文引用: 1]
[13]
KANEKO Y , ASAKA T . DHT clustering for load balancing considering blockchain data size[C]// 2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW). IEEE Computer Society, 2018: 71-74.
[本文引用: 1]
[14]
KOSHY P , KOSHY D , MCDANIEL P . An analysis of anonymity in bitcoin using P2P network traffic[C]// Financial Cryptography and Data Security:18th International Conference. Springer, 2014: 469-485.
[15]
BIRYUKOV A , KHOVRATOVICH D , PUSTOGAROV I . Deanonymisation of clients in bitcoin P2P network[C]// ACM SIGSAC Conference on Computer and Communications Security. ACM, 2014: 15-29.
[16]
VENKATAKRISHNAN S B , FANTI G , VISWANATH P . Dandelion:redesigning the bitcoin network for anonymity[C]// The 2017 ACM SIGMETRICS. ACM, 2017:57.
[本文引用: 1]
[17]
FANTI G , VENKATAKRISHNAN S B , BAKSHI S ,et al. Dandelion++:lightweight cryptocurrency networking with formal anonymity guarantees[J]. ACM SIGMETRICS Performance Evaluation Review, 2018,46: 5-7.
[本文引用: 1]
[18]
HEILMAN E , KENDLER A , ZOHAR A ,et al. Eclipse attacks on Bitcoin’s peer-to-peer network[C]// USENIX Conference on Security Symposium. USENIX Association, 2015: 129-144.
[本文引用: 1]
[19]
APOSTOLAKI M , ZOHAR A , VANBEVER L . Hijacking bitcoin:routing attacks on cryptocurrencies[C]// 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017: 375-392.
[本文引用: 2]
[20]
REYZIN L , IVANOV S . Improving authenticated dynamic dictionaries,with applications to cryptocurrencies[C]// International Conference on Financial Cryptography & Data Security. Springer, 2017: 376-392.
[本文引用: 1]
[21]
ZHANG C , XU C , XU J L ,et al. GEM^2-tree:a gas-efficient structure for authenticated range queries in blockchain[C]// IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 2019: 842-853.
[本文引用: 1]
[22]
REID F , HARRIGAN M . An analysis of anonymity in the bitcoin system[C]// 2011 IEEE Third International Conference on Privacy,Security,Risk and Trust. IEEE, 2011: 1318-1326.
[本文引用: 1]
[23]
MEIKLEJOHN S , POMAROLE M , JORDAN G ,et al. A fistful of bitcoins:characterizing payments among men with no names[C]// The 2013 Conference on Internet Measurement Conference. ACM, 2013: 127-140.
[本文引用: 1]
[24]
AWAN M K , CORTESI A . Blockchain transaction analysis using dominant sets[C]// IFIP International Conference on Computer Information Systems and Industrial Management. IFIP, 2017: 229-239.
[本文引用: 1]
[25]
SAXENA A , MISRA J , DHAR A . Increasing anonymity in bitcoin[C]// International Conference on Financial Cryptography and Data Security. Springer, 2014: 122-139.
[本文引用: 1]
[26]
MIERS I , GARMAN C , GREEN M ,et al. Zerocoin:anonymous distributed e-cash from bitcoin[C]// 2013 IEEE Symposium on Security and Privacy. IEEE, 2013: 397-411.
[本文引用: 1]
[27]
SASSON E B , CHIESA A , GARMAN C ,et al. Zerocash:decentralized anonymous payments from bitcoin[C]// 2014 IEEE Symposium on Security and Privacy (SP). IEEE, 2014: 459-474.
[本文引用: 1]
[28]
YIN W , WEN Q , LI W ,et al. A anti-quantum transaction authentication approach in blockchain[J]. IEEE Access, 2018,6: 5393-5401.
[本文引用: 1]
[29]
DOUCEUR J R , . The sybil attack[C]// The First International Workshop on Peer-to-Peer Systems(IPTPS’ 01). Springer, 2002: 251-260.
[本文引用: 1]
[30]
KARAME G O , ANDROULAKI E , CAPKUN S . Double-spending fast payments in bitcoin[C]// The 2012 ACM conference on Computer and communications security. ACM, 2012: 906-917.
[本文引用: 1]
[31]
LAMPORT L , SHOSTAK R , PEASE M . The byzantine generals problem[J]. ACM Transactions on Programming Languages and Systems, 1982,4: 382-401.
[本文引用: 1]
[32]
BANO S , SONNINO A , AL-BASSAM M ,et al. Consensus in the age of blockchains[J]..03936,2017. arXiv Preprint,arXiv:1711.03936,2017.
[本文引用: 1]
[33]
DWORK C , LYNCH N , STOCKMEYER L . Consensus in the presence of partial synchrony[J]. Journal of the ACM, 1988,35: 288-323.
[本文引用: 2]
[34]
TSCHORSCH F , SCHEUERMANN B . Bitcoin and beyond:a technical survey on decentralized digital currencies[J]. IEEE Communications Surveys & Tutorials, 2016,18: 2084-2123.
[本文引用: 1]
[35]
CACHIN C VUKOLIĆ M . Blockchains consensus protocols in the wild[J]. arXiv Preprint,arXiv:1707.01873, 2017.
[本文引用: 1]
[36]
CASTRO M , LISKOV B . Practical byzantine fault tolerance and proactive recovery[J]. ACM Transactions on Computer Systems, 2002,20: 398-461.
[本文引用: 1]
[37]
ONGARO D , OUSTERHOUT J . In search of an understandable consensus algorithm[C]// The 2014 USENIX Conference on USENIX Annual Technical Conference. USENIX Association, 2015: 305-320.
[本文引用: 1]
[38]
BALL M , ROSEN A , SABIN M ,et al. Proofs of useful work[R]. Cryptology ePrint Archive:Report 2017/203.
[本文引用: 1]
[39]
MIHALJEVIC B , ZAGAR M . Comparative analysis of blockchain consensus algorithms[C]// International Convention on Information and Communication Technology,Electronics and Microelectronics (MIPRO). IEEE, 2018: 1545-1550.
[本文引用: 1]
[40]
KIAYIAS A , RUSSELL A , DAVID B ,et al. Ouroboros:a provably secure proof-of-stake blockchain protocol[C]// Advances in Cryptology - CRYPTO 2017. Springer, 2017: 357-388.
[本文引用: 1]
[41]
FISCH B . Tight proofs of space and replication[J].,ePrint-2018-702. IACR Cryptology ePrint Archive,ePrint-2018-702.
[本文引用: 1]
[42]
BELOTTI M , BOŽIĆ N , PUJOLLE G ,et al. A vademecum on blockchain technologies:when,which,and how[J]. IEEE Communications Surveys & Tutorials, 2019,21: 3796-3838.
[本文引用: 1]
[43]
WANG W B , HOANG D T , HU P Z ,et al. A survey on consensus mechanisms and mining strategy management in blockchain networks[J]. IEEE Access, 2019,7: 22328-22370.
[本文引用: 1]
[44]
YOO J H , JUNG Y L , SHIN D H ,et al. Formal modeling and verification of a federated byzantine agreement algorithm for blockchain platforms[C]// IEEE International Workshop on Blockchain Oriented Software Engineering. 2019: 11-21.
[本文引用: 1]
[45]
ZHENG Z B , XIE S , DAI H ,et al. An overview of blockchain technology:architecture,consensus,and future trends[C]// 6th IEEE International Congress on Big Data. IEEE, 2017: 557-564.
[本文引用: 1]
[46]
YIN M , MALKHI D , REITER M K ,et al. HotStuff:BFT consensus in the lens of blockchain[C]// ACM Symposium on Principles of Distributed Computing. ACM, 2019: 347-356.
[本文引用: 1]
[47]
ALI S , WANG G , WHITE B ,et al. Libra critique towards global decentralized financial system[C]// Communications in Computer and Information Science. Springer, 2019: 661-672.
[本文引用: 1]
[48]
BENTOV I , LEE C , MIZRAHI A ,et al. Proof of activity:extending bitcoin’s proof of work via proof of stake[J]. IACR Cryptology ePrint Archive,ePrint-2014-25478.
[本文引用: 1]
[49]
DECKER C , SEIDEL J , WATTENHOFER R . Bitcoin meets strong consistency[J].,2014. arXiv Preprint,arXiv:1412.7935,2014.
[本文引用: 1]
[50]
KOKORIS-KOGIAS E , JOVANOVIC P , GAILLY N ,et al. Enhancing bitcoin security and performance with strong consistency via collective signing[J]. Applied Mathematical Modelling, 2016,37: 5723-5742.
[本文引用: 1]
[51]
BUTERIN V , GRIFFITH V . Casper the friendly finality gadget[J]. arXiv Preprint,arXiv:1710.09437,2017.
[本文引用: 1]
[52]
TSCHORSCH F , SCHEUERMANN B . Bitcoin and beyond:a technical survey on decentralized digital currencies[J]. IEEE Communications Surveys & Tutorials, 2016,18: 2084-2023,2017.
[本文引用: 1]
[53]
KIAYIAS A , MILLER A , ZINDROS D . Non-interactive proofs of proof-of-work[J]. IACR Cryptology ePrint Archive,ePrint-2017-963.
[本文引用: 1]
[54]
LUU L , NARAYANAN V , ZHENG C ,et al. A secure sharding protocol for open blockchains[C]// The 2016 ACM SIGSAC Conference on Computer and Communications Security(CCS’16). ACM, 2016: 17-30.
[本文引用: 1]
[55]
KOKORIS-KOGIAS E , JOVANOVIC P , GASSER L ,et al. OmniLedger:a secure,scale-out,decentralized ledger via sharding[C]// IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, 2018: 583-598.
[本文引用: 1]
[56]
LI S , YU M , AVESTIMEHR S ,et al. PolyShard:coded sharding achieves linearly scaling efficiency and security simultaneously[J]. arXiv Preprint,arXiv:1809.10361,2018.
[本文引用: 1]
[57]
XIE J F , YU F R , HUANG T ,et al. A survey on the scalability of blockchain systems[J]. IEEE Network, 2019,33: 166-173.
[本文引用: 1]
[58]
BURCHERT C , DECKER C , WATTENHOFER R . Scalable funding of bitcoin micropayment channel networks[C]// Stabilization,Safety,and Security of Distributed Systems. Springer, 2017: 361-377.
[本文引用: 1]
[59]
LUU L , CHU D , OLICKEL H ,et al. Making smart contracts smarter[C]// The 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016: 254-269.
[本文引用: 1]
[60]
BRENT L , JURISEVIC A , KONG M ,et al. Vandal:a scalable security analysis framework for smart contracts[J]. arXiv Preprint,arXiv:1809.039812018.
[本文引用: 1]
[61]
JIANG B , LIU Y , CHAN W K . ContractFuzzer:fuzzing smart contracts for vulnerability detection[J]. arXiv Preprint,arXiv:1807.03932,2018.
[本文引用: 1]
[62]
HASHEMI S H , FAGHRI F , CAMPBELL R H . Decentralized user-centric access control using pubsub over blockchain[J]. arXiv Preprint,arXiv:1710.00110,2017.
[本文引用: 1]
[63]
BAO S.CAO Y , LEI A ,et al. Pseudonym management through blockchain:cost-efficient privacy preservation on intelligent transportation systems[J]. IEEE Access, 2019,7: 80390-80403.
[本文引用: 1]
[64]
SAMANIEGO M , DETERS R . Hosting virtual IoT resources on edge-hosts with blockchain[C]// IEEE International Conference on Computer & Information Technology. IEEE, 2016: 116-119.
[本文引用: 1]
[65]
STANCIU A , . Blockchain based distributed control system for edge computing[C]// International Conference on Control Systems &Computer Science. IEEE, 2017: 667-671.
[本文引用: 1]
[66]
ZIEGLER M H , GROMANN M , KRIEGER U R . Integration of fog computing and blockchain technology using the plasma framework[C]// 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE, 2019: 120-123.
[本文引用: 1]
[67]
KIM H , PARK J , BENNIS M ,et al. Blockchained on-device federated learning[J]. arXiv Preprint,arXiv:1808.03949, 2018.
[本文引用: 1]
[68]
BRAVO-MARQUEZ F , REEVES S , UGARTE M . Proof-of- learning:a blockchain consensus mechanism based on machine learning competitions[C]// 2019 IEEE International Conference on Decentralized Applications and Infrastructures. IEEE, 2019: 119-124.
[本文引用: 1]
[69]
刘江, 霍如, 李诚成 ,等. 基于命名数据网络的区块链信息传输机制[J]. 通信学报, 2018,39(1), 24-33.
[本文引用: 1]
LIU J , HUO R , LI C C ,et al. Information transmission mechanism of Blockchain technology based on named-data networking[J]. Journal on Communications, 2018,39(1): 24-33.
[本文引用: 1]
区块链技术发展现状与展望
1
2016
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
区块链技术发展现状与展望
1
2016
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
企业级区块链技术综述
1
2019
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
企业级区块链技术综述
1
2019
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
A survey on blockchain-based internet service architecture:requirements,challenges,trends,and future
1
2019
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
区块链安全问题:研究现状与展望
1
2016
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
区块链安全问题:研究现状与展望
1
2016
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
Applications of blockchains in the Internet of things:a comprehensive survey
1
2019
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
Blind signature system
1
1984
... 加密货币的概念起源于一种基于盲签名(blind signature)的匿名交易技术[6],最早的加密货币交易模型“electronic cash”[7]如图1所示. ...
How to make a mint:the cryptography of anonymous electronic cash
1
1997
... 加密货币的概念起源于一种基于盲签名(blind signature)的匿名交易技术[6],最早的加密货币交易模型“electronic cash”[7]如图1所示. ...
Proofs of work and bread pudding protocols
1
1999
... 最早的加密货币构想将银行作为构建信任的基础,呈现中心化特点.此后,加密货币朝着去中心化方向发展,并试图用工作量证明(PoW,poof of work)[8]或其改进方法定义价值.比特币在此基础上,采用新型分布式账本技术保证被所有节点维护的数据不可篡改,从而成功构建信任基础,成为真正意义上的去中心化加密货币.区块链从去中心化加密货币发展而来,随着区块链的进一步发展,去中心化加密货币已经成为区块链的主要应用之一. ...
P2P 关键技术研究综述
1
2010
... 对等网络的体系架构可分为无结构对等网络、结构化对等网络和混合式对等网络[9],根据节点的逻辑拓扑关系,区块链网络的组网结构也可以划分为上述3种,如图3所示. ...
P2P 关键技术研究综述
1
2010
... 对等网络的体系架构可分为无结构对等网络、结构化对等网络和混合式对等网络[9],根据节点的逻辑拓扑关系,区块链网络的组网结构也可以划分为上述3种,如图3所示. ...
Epidemic algorithms for replicated database maintenance
1
1988
... 传播层实现对等节点间数据的基本传输,包括2 种数据传播方式:单点传播和多点传播.单点传播是指数据在2个已知节点间直接进行传输而不经过其他节点转发的传播方式;多点传播是指接收数据的节点通过广播向邻近节点进行数据转发的传播方式,区块链网络普遍基于Gossip协议[10]实现洪泛传播.连接层用于获取节点信息,监测和改变节点间连通状态,确保节点间链路的可用性(availability).具体而言,连接层协议帮助新加入节点获取路由表数据,通过定时心跳监测为节点保持稳定连接,在邻居节点失效等情况下为节点关闭连接等.交互逻辑层是区块链网络的核心,从主要流程上看,该层协议承载对等节点间账本数据的同步、交易和区块数据的传输、数据校验结果的反馈等信息交互逻辑,除此之外,还为节点选举、共识算法实施等复杂操作和扩展应用提供消息通路. ...
Information propagation in the bitcoin network
1
2013
... 随着近年来区块链网络的爆炸式发展以及开源特点,学术界开始关注大型公有链项目的网络状况,监测并研究它们的特点,研究对象主要为比特币网络.Decker等[11]设计和实现测量工具,分析传播时延数据、协议数据和地址数据,建模分析影响比特币网络性能的网络层因素,基于此提出各自的优化方法.Fadhil等[12]提出基于事件仿真的比特币网络仿真模型,利用真实测量数据验证模型的有效性,最后提出优化机制 BCBSN,旨在设立超级节点降低网络波动.Kaneko 等[13]将区块链节点分为共识节点和验证节点,其中共识节点采用无结构组网方式,验证节点采用结构化组网方式,利用不同组网方式的优点实现网络负载的均衡. ...
Locality based approach to improve propagation delay on the bitcoin peer-to-peer network
1
2017
... 随着近年来区块链网络的爆炸式发展以及开源特点,学术界开始关注大型公有链项目的网络状况,监测并研究它们的特点,研究对象主要为比特币网络.Decker等[11]设计和实现测量工具,分析传播时延数据、协议数据和地址数据,建模分析影响比特币网络性能的网络层因素,基于此提出各自的优化方法.Fadhil等[12]提出基于事件仿真的比特币网络仿真模型,利用真实测量数据验证模型的有效性,最后提出优化机制 BCBSN,旨在设立超级节点降低网络波动.Kaneko 等[13]将区块链节点分为共识节点和验证节点,其中共识节点采用无结构组网方式,验证节点采用结构化组网方式,利用不同组网方式的优点实现网络负载的均衡. ...
DHT clustering for load balancing considering blockchain data size
1
2018
... 随着近年来区块链网络的爆炸式发展以及开源特点,学术界开始关注大型公有链项目的网络状况,监测并研究它们的特点,研究对象主要为比特币网络.Decker等[11]设计和实现测量工具,分析传播时延数据、协议数据和地址数据,建模分析影响比特币网络性能的网络层因素,基于此提出各自的优化方法.Fadhil等[12]提出基于事件仿真的比特币网络仿真模型,利用真实测量数据验证模型的有效性,最后提出优化机制 BCBSN,旨在设立超级节点降低网络波动.Kaneko 等[13]将区块链节点分为共识节点和验证节点,其中共识节点采用无结构组网方式,验证节点采用结构化组网方式,利用不同组网方式的优点实现网络负载的均衡. ...
An analysis of anonymity in bitcoin using P2P network traffic
2014
Deanonymisation of clients in bitcoin P2P network
2014
Dandelion:redesigning the bitcoin network for anonymity
1
2017
... 匿名性是加密货币的重要特性之一,但从网络层视角看,区块链的匿名性并不能有效保证,因为攻击者可以利用监听并追踪 IP 地址的方式推测出交易之间、交易与公钥地址之间的关系,通过匿名隐私研究可以主动发掘安全隐患,规避潜在危害.Koshy 等[16,17]从网络拓扑、传播层协议和作恶模型3个方面对比特币网络进行建模,通过理论分析和仿真实验证明了比特币网络协议在树形组网结构下仅具备弱匿名性,在此基础上提出 Dandelion 网络策略以较低的网络开销优化匿名性,随后又提出 Dandelion++原理,以最优信息理论保证来抵抗大规模去匿名攻击. ...
Dandelion++:lightweight cryptocurrency networking with formal anonymity guarantees
1
2018
... 匿名性是加密货币的重要特性之一,但从网络层视角看,区块链的匿名性并不能有效保证,因为攻击者可以利用监听并追踪 IP 地址的方式推测出交易之间、交易与公钥地址之间的关系,通过匿名隐私研究可以主动发掘安全隐患,规避潜在危害.Koshy 等[16,17]从网络拓扑、传播层协议和作恶模型3个方面对比特币网络进行建模,通过理论分析和仿真实验证明了比特币网络协议在树形组网结构下仅具备弱匿名性,在此基础上提出 Dandelion 网络策略以较低的网络开销优化匿名性,随后又提出 Dandelion++原理,以最优信息理论保证来抵抗大规模去匿名攻击. ...
Eclipse attacks on Bitcoin’s peer-to-peer network
1
2015
... 区块链重点关注其数据层和共识层面机制,并基于普通网络构建开放的互联环境,该方式极易遭受攻击.为提高区块链网络的安全性,学术界展开研究并给出了相应的解决方案.Heilman 等[18]对比特币和以太坊网络实施日蚀攻击(eclipse attack)——通过屏蔽正确节点从而完全控制特定节点的信息来源,证实了该攻击的可行性.Apostolaki等[19]提出针对比特币网络的 BGP(border gateway protocal)劫持攻击,通过操纵自治域间路由或拦截域间流量来制造节点通信阻塞,表明针对关键数据的沿路攻击可以大大降低区块传播性能. ...
Hijacking bitcoin:routing attacks on cryptocurrencies
2
2017
... 区块链重点关注其数据层和共识层面机制,并基于普通网络构建开放的互联环境,该方式极易遭受攻击.为提高区块链网络的安全性,学术界展开研究并给出了相应的解决方案.Heilman 等[18]对比特币和以太坊网络实施日蚀攻击(eclipse attack)——通过屏蔽正确节点从而完全控制特定节点的信息来源,证实了该攻击的可行性.Apostolaki等[19]提出针对比特币网络的 BGP(border gateway protocal)劫持攻击,通过操纵自治域间路由或拦截域间流量来制造节点通信阻塞,表明针对关键数据的沿路攻击可以大大降低区块传播性能. ...
... 网络层主要缺陷在于安全性,可拓展性则有待优化.如何防御以 BGP 劫持为代表的网络攻击将成为区块链底层网络的安全研究方向[19].信息中心网络将重塑区块链基础传输网络,通过请求聚合和数据缓存减少网内冗余流量并加速通信传输[69].相比于数据层和共识层,区块链网络的关注度较低,但却是影响安全性、可拓展性的基本因素. ...
Improving authenticated dynamic dictionaries,with applications to cryptocurrencies
1
2017
... 高效验证的学术问题源于验证数据结构(ADS,authenticated data structure),即利用特定数据结构快速验证数据的完整性,实际上 MKT 也是其中的一种.为了适应区块链数据的动态性(dynamical)并保持良好性能,学术界展开了研究.Reyzin等[20]基于AVL树形结构提出AVL+,并通过平衡验证路径、缺省堆栈交易集等机制,简化轻量级节点的区块头验证过程.Zhang等[21]提出GEM2-tree结构,并对其进行优化提出 GEM2כ-tree 结构,通过分解单树结构、动态调整节点计算速度、扩展数据索引等机制降低以太坊节点计算开销. ...
GEM^2-tree:a gas-efficient structure for authenticated range queries in blockchain
1
2019
... 高效验证的学术问题源于验证数据结构(ADS,authenticated data structure),即利用特定数据结构快速验证数据的完整性,实际上 MKT 也是其中的一种.为了适应区块链数据的动态性(dynamical)并保持良好性能,学术界展开了研究.Reyzin等[20]基于AVL树形结构提出AVL+,并通过平衡验证路径、缺省堆栈交易集等机制,简化轻量级节点的区块头验证过程.Zhang等[21]提出GEM2-tree结构,并对其进行优化提出 GEM2כ-tree 结构,通过分解单树结构、动态调整节点计算速度、扩展数据索引等机制降低以太坊节点计算开销. ...
An analysis of anonymity in the bitcoin system
1
2011
... 区块数据直接承载业务信息,因此区块数据的匿名关联性分析更为直接.Reid等[22]将区块数据建模为事务网络和用户网络,利用多交易数据的用户指向性分析成功降低网络复杂度.Meiklejohn等[23]利用启发式聚类方法分析交易数据的流动特性并对用户进行分组,通过与这些服务的互动来识别主要机构的比特币地址.Awan 等[24]使用优势集(dominant set)方法对区块链交易进行自动分类,从而提高分析准确率. ...
A fistful of bitcoins:characterizing payments among men with no names
1
2013
... 区块数据直接承载业务信息,因此区块数据的匿名关联性分析更为直接.Reid等[22]将区块数据建模为事务网络和用户网络,利用多交易数据的用户指向性分析成功降低网络复杂度.Meiklejohn等[23]利用启发式聚类方法分析交易数据的流动特性并对用户进行分组,通过与这些服务的互动来识别主要机构的比特币地址.Awan 等[24]使用优势集(dominant set)方法对区块链交易进行自动分类,从而提高分析准确率. ...
Blockchain transaction analysis using dominant sets
1
2017
... 区块数据直接承载业务信息,因此区块数据的匿名关联性分析更为直接.Reid等[22]将区块数据建模为事务网络和用户网络,利用多交易数据的用户指向性分析成功降低网络复杂度.Meiklejohn等[23]利用启发式聚类方法分析交易数据的流动特性并对用户进行分组,通过与这些服务的互动来识别主要机构的比特币地址.Awan 等[24]使用优势集(dominant set)方法对区块链交易进行自动分类,从而提高分析准确率. ...
Increasing anonymity in bitcoin
1
2014
... 隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私.Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性.非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成. ...
Zerocoin:anonymous distributed e-cash from bitcoin
1
2013
... 隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私.Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性.非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成. ...
Zerocash:decentralized anonymous payments from bitcoin
1
2014
... 隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私.Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性.非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成. ...
A anti-quantum transaction authentication approach in blockchain
1
2018
... 隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私.Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性.非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成. ...
The sybil attack
1
2002
... 区块链网络中每个节点必须维护完全相同的账本数据,然而各节点产生数据的时间不同、获取数据的来源未知,存在节点故意广播错误数据的可能性,这将导致女巫攻击[29]、双花攻击[30]等安全风险;除此之外,节点故障、网络拥塞带来的数据异常也无法预测.因此,如何在不可信的环境下实现账本数据的全网统一是共识层解决的关键问题.实际上,上述错误是拜占庭将军问题(the Byzantine generals problem)[31]在区块链中的具体表现,即拜占庭错误——相互独立的组件可以做出任意或恶意的行为,并可能与其他错误组件产生协作,此类错误在可信分布式计算领域被广泛研究. ...
Double-spending fast payments in bitcoin
1
2012
... 区块链网络中每个节点必须维护完全相同的账本数据,然而各节点产生数据的时间不同、获取数据的来源未知,存在节点故意广播错误数据的可能性,这将导致女巫攻击[29]、双花攻击[30]等安全风险;除此之外,节点故障、网络拥塞带来的数据异常也无法预测.因此,如何在不可信的环境下实现账本数据的全网统一是共识层解决的关键问题.实际上,上述错误是拜占庭将军问题(the Byzantine generals problem)[31]在区块链中的具体表现,即拜占庭错误——相互独立的组件可以做出任意或恶意的行为,并可能与其他错误组件产生协作,此类错误在可信分布式计算领域被广泛研究. ...
The byzantine generals problem
1
1982
... 区块链网络中每个节点必须维护完全相同的账本数据,然而各节点产生数据的时间不同、获取数据的来源未知,存在节点故意广播错误数据的可能性,这将导致女巫攻击[29]、双花攻击[30]等安全风险;除此之外,节点故障、网络拥塞带来的数据异常也无法预测.因此,如何在不可信的环境下实现账本数据的全网统一是共识层解决的关键问题.实际上,上述错误是拜占庭将军问题(the Byzantine generals problem)[31]在区块链中的具体表现,即拜占庭错误——相互独立的组件可以做出任意或恶意的行为,并可能与其他错误组件产生协作,此类错误在可信分布式计算领域被广泛研究. ...
Consensus in the age of blockchains
1
... 状态机复制(state-machine replication)是解决分布式系统容错问题的常用理论.其基本思想为:任何计算都表示为状态机,通过接收消息来更改其状态.假设一组副本以相同的初始状态开始,并且能够就一组公共消息的顺序达成一致,那么它们可以独立进行状态的演化计算,从而正确维护各自副本之间的一致性.同样,区块链也使用状态机复制理论解决拜占庭容错问题,如果把每个节点的数据视为账本数据的副本,那么节点接收到的交易、区块即为引起副本状态变化的消息.状态机复制理论实现和维持副本的一致性主要包含2个要素:正确执行计算逻辑的确定性状态机和传播相同序列消息的共识协议.其中,共识协议是影响容错效果、吞吐量和复杂度的关键,不同安全性、可扩展性要求的系统需要的共识协议各有不同.学术界普遍根据通信模型和容错类型对共识协议进行区分[32],因此严格地说,区块链使用的共识协议需要解决的是部分同步(partial synchrony)模型[33]下的拜占庭容错问题. ...
Consensus in the presence of partial synchrony
2
1988
... 状态机复制(state-machine replication)是解决分布式系统容错问题的常用理论.其基本思想为:任何计算都表示为状态机,通过接收消息来更改其状态.假设一组副本以相同的初始状态开始,并且能够就一组公共消息的顺序达成一致,那么它们可以独立进行状态的演化计算,从而正确维护各自副本之间的一致性.同样,区块链也使用状态机复制理论解决拜占庭容错问题,如果把每个节点的数据视为账本数据的副本,那么节点接收到的交易、区块即为引起副本状态变化的消息.状态机复制理论实现和维持副本的一致性主要包含2个要素:正确执行计算逻辑的确定性状态机和传播相同序列消息的共识协议.其中,共识协议是影响容错效果、吞吐量和复杂度的关键,不同安全性、可扩展性要求的系统需要的共识协议各有不同.学术界普遍根据通信模型和容错类型对共识协议进行区分[32],因此严格地说,区块链使用的共识协议需要解决的是部分同步(partial synchrony)模型[33]下的拜占庭容错问题. ...
... 比特币在网络层采用非结构化方式组网,路由表呈现随机性.节点间则采用多点传播方式传递数据,曾基于Gossip协议实现,为提高网络的抗匿名分析能力改为基于Diffusion协议实现[33].节点利用一系列控制协议确保链路的可用性,包括版本获取(Vetsion/Verack)、地址获取(Addr/GetAddr)、心跳信息(PING/PONG)等.新节点入网时,首先向硬编码 DNS 节点(种子节点)请求初始节点列表;然后向初始节点随机请求它们路由表中的节点信息,以此生成自己的路由表;最后节点通过控制协议与这些节点建立连接,并根据信息交互的频率更新路由表中节点时间戳,从而保证路由表中的节点都是活动的.交互逻辑层为建立共识交互通道,提供了区块获取(GetBlock)、交易验证(MerkleBlock)、主链选择(CmpctBlock)等协议;轻节点只需要进行简单的区块头验证,因此通过头验证(GetHeader/Header)协议和连接层中的过滤设置协议指定需要验证的区块头即可建立简单验证通路.在安全机制方面,比特币网络可选择利用匿名通信网络Tor作为数据传输承载,通过沿路径的层层数据加密机制来保护对端身份. ...
Bitcoin and beyond:a technical survey on decentralized digital currencies
1
2016
... 区块链网络中主要包含PoX(poof of X)[34]、BFT(byzantine-fault tolerant)和 CFT(crash-fault tolerant)类基础共识协议.PoX 类协议是以 PoW (proof of work)为代表的基于奖惩机制驱动的新型共识协议,为了适应数据吞吐量、资源利用率和安全性的需求,人们又提出PoS(proof of stake)、PoST (proof of space-time)等改进协议.它们的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.BFT类协议是指解决拜占庭容错问题的传统共识协议及其改良协议,包括PBFT、BFT-SMaRt、Tendermint等.CFT类协议用于实现崩溃容错,通过身份证明等手段规避节点作恶的情况,仅考虑节点或网络的崩溃(crash)故障,主要包括Raft、Paxos、Kafka等协议. ...
Blockchains consensus protocols in the wild
1
2017
... 非许可链和许可链的开放程度和容错需求存在差异,共识层面技术在两者之间产生了较大区别.具体而言,非许可链完全开放,需要抵御严重的拜占庭风险,多采用PoX、BFT类协议并配合奖惩机制实现共识.许可链拥有准入机制,网络中节点身份可知,一定程度降低了拜占庭风险,因此可采用BFT类协议、CFT类协议构建相同的信任模型[35]. ...
Practical byzantine fault tolerance and proactive recovery
1
2002
... PBFT是 BFT经典共识协议,其主要流程如图8 所示.PBFT将节点分为主节点和副节点,其中主节点负责将交易打包成区块,副节点参与验证和转发,假设作恶节点数量为f.PBFT共识主要分为预准备、准备和接受3个阶段,主节点首先收集交易后排序并提出合法区块提案;其余节点先验证提案的合法性,然后根据区块内交易顺序依次执行并将结果摘要组播;各节点收到2f个与自身相同的摘要后便组播接受投票;当节点收到超过2f+1个投票时便存储区块及其产生的新状态[36]. ...
In search of an understandable consensus algorithm
1
2015
... Raft[37]是典型的崩溃容错共识协议,以可用性强著称.Raft将节点分为跟随节点、候选节点和领导节点,领导节点负责将交易打包成区块,追随节点响应领导节点的同步指令,候选节点完成领导节点的选举工作.当网络运行稳定时,只存在领导节点和追随节点,领导节点向追随节点推送区块数据从而实现同步.节点均设置生存时间决定角色变化周期,领导节点的心跳信息不断重置追随节点的生存时间,当领导节点发生崩溃时,追随节点自动转化为候选节点并进入选举流程,实现网络自恢复. ...
Proofs of useful work
1
2017
... 如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费.PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块.PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举.Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性.PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用. ...
Comparative analysis of blockchain consensus algorithms
1
2018
... 如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费.PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块.PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举.Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性.PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用. ...
Ouroboros:a provably secure proof-of-stake blockchain protocol
1
2017
... 如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费.PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块.PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举.Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性.PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用. ...
Tight proofs of space and replication
1
... 如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费.PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块.PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举.Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性.PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用. ...
A vademecum on blockchain technologies:when,which,and how
1
2019
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
A survey on consensus mechanisms and mining strategy management in blockchain networks
1
2019
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
Formal modeling and verification of a federated byzantine agreement algorithm for blockchain platforms
1
2019
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
An overview of blockchain technology:architecture,consensus,and future trends
1
2017
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
HotStuff:BFT consensus in the lens of blockchain
1
2019
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
Libra critique towards global decentralized financial system
1
2019
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
Proof of activity:extending bitcoin’s proof of work via proof of stake
1
... Hybrid 类协议是研究趋势之一.PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享.PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力.ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延.Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份. ...
Bitcoin meets strong consistency
1
... Hybrid 类协议是研究趋势之一.PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享.PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力.ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延.Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份. ...
Enhancing bitcoin security and performance with strong consistency via collective signing
1
2016
... Hybrid 类协议是研究趋势之一.PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享.PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力.ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延.Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份. ...
Casper the friendly finality gadget
1
... Hybrid 类协议是研究趋势之一.PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享.PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力.ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延.Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份. ...
Bitcoin and beyond:a technical survey on decentralized digital currencies
1
2016
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
Non-interactive proofs of proof-of-work
1
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
A secure sharding protocol for open blockchains
1
2016
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
OmniLedger:a secure,scale-out,decentralized ledger via sharding
1
2018
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
PolyShard:coded sharding achieves linearly scaling efficiency and security simultaneously
1
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
A survey on the scalability of blockchain systems
1
2019
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
Scalable funding of bitcoin micropayment channel networks
1
2017
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
Making smart contracts smarter
1
2016
... 一方面,沙盒环境承载了区块链节点运行条件,针对虚拟机展开的攻击更为直接;另一方面,智能合约直接对账本进行操作,其漏洞更易影响业务运行,因此控制层的安全防护研究成为热点.Luu等[59]分析了运行于EVM中的智能合约安全性,指出底层平台的分布式语义差异带来的安全问题.Brent 等[60]提出智能合约安全分析框架 Vandal,将EVM 字节码转换为语义逻辑关,为分析合约安全漏洞提供便利.Jiang 等[61]预先定义用于安全漏洞的特征,然后模拟执行大规模交易,通过分析日志中的合约行为实现漏洞检测. ...
Vandal:a scalable security analysis framework for smart contracts
1
2018
... 一方面,沙盒环境承载了区块链节点运行条件,针对虚拟机展开的攻击更为直接;另一方面,智能合约直接对账本进行操作,其漏洞更易影响业务运行,因此控制层的安全防护研究成为热点.Luu等[59]分析了运行于EVM中的智能合约安全性,指出底层平台的分布式语义差异带来的安全问题.Brent 等[60]提出智能合约安全分析框架 Vandal,将EVM 字节码转换为语义逻辑关,为分析合约安全漏洞提供便利.Jiang 等[61]预先定义用于安全漏洞的特征,然后模拟执行大规模交易,通过分析日志中的合约行为实现漏洞检测. ...
ContractFuzzer:fuzzing smart contracts for vulnerability detection
1
2018
... 一方面,沙盒环境承载了区块链节点运行条件,针对虚拟机展开的攻击更为直接;另一方面,智能合约直接对账本进行操作,其漏洞更易影响业务运行,因此控制层的安全防护研究成为热点.Luu等[59]分析了运行于EVM中的智能合约安全性,指出底层平台的分布式语义差异带来的安全问题.Brent 等[60]提出智能合约安全分析框架 Vandal,将EVM 字节码转换为语义逻辑关,为分析合约安全漏洞提供便利.Jiang 等[61]预先定义用于安全漏洞的特征,然后模拟执行大规模交易,通过分析日志中的合约行为实现漏洞检测. ...
Decentralized user-centric access control using pubsub over blockchain
1
2017
... 智慧城市是指利用 ICT 优化公共资源利用效果、提高居民生活质量、丰富设施信息化能力的研究领域,该领域包括个人信息管理、智慧医疗、智慧交通、供应链管理等具体场景.智慧城市强调居民、设施等各类数据的采集、分析与使能,数据可靠性、管理透明化、共享可激励等需求为智慧城市带来了许多技术挑战.区块链去中心化的交互方式避免了单点故障、提升管理公平性,公开透明的账本保证数据可靠及可追溯性,多种匿名机制利于居民隐私的保护,因此区块链有利于问题的解决.Hashemi等[62]将区块链用于权限数据存储,构建去中心化的个人数据接入控制模型;Bao等[63]利用区块链高效认证和管理用户标识,保护车主的身份、位置、车辆信息等个人数据. ...
Pseudonym management through blockchain:cost-efficient privacy preservation on intelligent transportation systems
1
2019
... 智慧城市是指利用 ICT 优化公共资源利用效果、提高居民生活质量、丰富设施信息化能力的研究领域,该领域包括个人信息管理、智慧医疗、智慧交通、供应链管理等具体场景.智慧城市强调居民、设施等各类数据的采集、分析与使能,数据可靠性、管理透明化、共享可激励等需求为智慧城市带来了许多技术挑战.区块链去中心化的交互方式避免了单点故障、提升管理公平性,公开透明的账本保证数据可靠及可追溯性,多种匿名机制利于居民隐私的保护,因此区块链有利于问题的解决.Hashemi等[62]将区块链用于权限数据存储,构建去中心化的个人数据接入控制模型;Bao等[63]利用区块链高效认证和管理用户标识,保护车主的身份、位置、车辆信息等个人数据. ...
Hosting virtual IoT resources on edge-hosts with blockchain
1
2016
... 边缘计算是一种将计算、存储、网络资源从云平台迁移到网络边缘的分布式信息服务架构,试图将传统移动通信网、互联网和物联网等业务进行深度融合,减少业务交付的端到端时延,提升用户体验.安全问题是边缘计算面临的一大技术挑战,一方面,边缘计算的层次结构中利用大量异构终端设备提供用户服务,这些设备可能产生恶意行为;另一方面,服务迁移过程中的数据完整性和真实性需要得到保障.区块链在这种复杂的工作环境和开放的服务架构中能起到较大作用.首先,区块链能够在边缘计算底层松散的设备网络中构建不可篡改的账本,提供设备身份和服务数据验证的依据.其次,设备能在智能合约的帮助下实现高度自治,为边缘计算提供设备可信互操作基础.Samaniego等[64]提出了一种基于区块链的虚拟物联网资源迁移架构,通过区块链共享资源数据从而保障安全性.Stanciu[65]结合软件定义网络(SDN)、雾计算和区块链技术提出分布式安全云架构,解决雾节点中SDN控制器流表策略的安全分发问题.Ziegler等[66]基于 Plasma 框架提出雾计算场景下的区块链可扩展应用方案,提升雾计算网关的安全性. ...
Blockchain based distributed control system for edge computing
1
2017
... 边缘计算是一种将计算、存储、网络资源从云平台迁移到网络边缘的分布式信息服务架构,试图将传统移动通信网、互联网和物联网等业务进行深度融合,减少业务交付的端到端时延,提升用户体验.安全问题是边缘计算面临的一大技术挑战,一方面,边缘计算的层次结构中利用大量异构终端设备提供用户服务,这些设备可能产生恶意行为;另一方面,服务迁移过程中的数据完整性和真实性需要得到保障.区块链在这种复杂的工作环境和开放的服务架构中能起到较大作用.首先,区块链能够在边缘计算底层松散的设备网络中构建不可篡改的账本,提供设备身份和服务数据验证的依据.其次,设备能在智能合约的帮助下实现高度自治,为边缘计算提供设备可信互操作基础.Samaniego等[64]提出了一种基于区块链的虚拟物联网资源迁移架构,通过区块链共享资源数据从而保障安全性.Stanciu[65]结合软件定义网络(SDN)、雾计算和区块链技术提出分布式安全云架构,解决雾节点中SDN控制器流表策略的安全分发问题.Ziegler等[66]基于 Plasma 框架提出雾计算场景下的区块链可扩展应用方案,提升雾计算网关的安全性. ...
Integration of fog computing and blockchain technology using the plasma framework
1
2019
... 边缘计算是一种将计算、存储、网络资源从云平台迁移到网络边缘的分布式信息服务架构,试图将传统移动通信网、互联网和物联网等业务进行深度融合,减少业务交付的端到端时延,提升用户体验.安全问题是边缘计算面临的一大技术挑战,一方面,边缘计算的层次结构中利用大量异构终端设备提供用户服务,这些设备可能产生恶意行为;另一方面,服务迁移过程中的数据完整性和真实性需要得到保障.区块链在这种复杂的工作环境和开放的服务架构中能起到较大作用.首先,区块链能够在边缘计算底层松散的设备网络中构建不可篡改的账本,提供设备身份和服务数据验证的依据.其次,设备能在智能合约的帮助下实现高度自治,为边缘计算提供设备可信互操作基础.Samaniego等[64]提出了一种基于区块链的虚拟物联网资源迁移架构,通过区块链共享资源数据从而保障安全性.Stanciu[65]结合软件定义网络(SDN)、雾计算和区块链技术提出分布式安全云架构,解决雾节点中SDN控制器流表策略的安全分发问题.Ziegler等[66]基于 Plasma 框架提出雾计算场景下的区块链可扩展应用方案,提升雾计算网关的安全性. ...
Blockchained on-device federated learning
1
2018
... 人工智能是一类智能代理的研究,使机器感知环境/信息,然后进行正确的行为决策,正确是指达成人类预定的某些目标.人工智能的关键在于算法,而大部分机器学习和深度学习算法建立于体积庞大的数据集和中心化的训练模型之上,该方式易受攻击或恶意操作使数据遭到篡改,其后果为模型的不可信与算力的浪费.此外,数据采集过程中无法确保下游设备的安全性,无法保证数据来源的真实性与完整性,其后果将在自动驾驶等场景中被放大.区块链不可篡改的特性可以实现感知和训练过程的可信.另外,去中心化和合约自治特性为人工智能训练工作的分解和下放奠定了基础,保障安全的基础上提高计算效率.Kim等[67]利用区块链验证联合学习框架下的分发模型的完整性,并根据计算成本提供相应的激励,优化整体学习效果.Bravo-Marquez 等[68]提出共识机制“学习证明”以减轻PoX类共识的计算浪费,构建公共可验证的学习模型和实验数据库. ...
Proof-of- learning:a blockchain consensus mechanism based on machine learning competitions
1
2019
... 人工智能是一类智能代理的研究,使机器感知环境/信息,然后进行正确的行为决策,正确是指达成人类预定的某些目标.人工智能的关键在于算法,而大部分机器学习和深度学习算法建立于体积庞大的数据集和中心化的训练模型之上,该方式易受攻击或恶意操作使数据遭到篡改,其后果为模型的不可信与算力的浪费.此外,数据采集过程中无法确保下游设备的安全性,无法保证数据来源的真实性与完整性,其后果将在自动驾驶等场景中被放大.区块链不可篡改的特性可以实现感知和训练过程的可信.另外,去中心化和合约自治特性为人工智能训练工作的分解和下放奠定了基础,保障安全的基础上提高计算效率.Kim等[67]利用区块链验证联合学习框架下的分发模型的完整性,并根据计算成本提供相应的激励,优化整体学习效果.Bravo-Marquez 等[68]提出共识机制“学习证明”以减轻PoX类共识的计算浪费,构建公共可验证的学习模型和实验数据库. ...
基于命名数据网络的区块链信息传输机制
1
2018
... 网络层主要缺陷在于安全性,可拓展性则有待优化.如何防御以 BGP 劫持为代表的网络攻击将成为区块链底层网络的安全研究方向[19].信息中心网络将重塑区块链基础传输网络,通过请求聚合和数据缓存减少网内冗余流量并加速通信传输[69].相比于数据层和共识层,区块链网络的关注度较低,但却是影响安全性、可拓展性的基本因素. ...
基于命名数据网络的区块链信息传输机制
1
2018
... 网络层主要缺陷在于安全性,可拓展性则有待优化.如何防御以 BGP 劫持为代表的网络攻击将成为区块链底层网络的安全研究方向[19].信息中心网络将重塑区块链基础传输网络,通过请求聚合和数据缓存减少网内冗余流量并加速通信传输[69].相比于数据层和共识层,区块链网络的关注度较低,但却是影响安全性、可拓展性的基本因素. ...
/
〈
〉
期刊网站版权所有 © 2021 《通信学报》编辑部
地址:北京市丰台区东铁匠营街道顺八条1号院B座“北阳晨光大厦”2层 邮编:100079
电话:010-53878169、53859522、53878236 电子邮件:xuebao@ptpress.com.cn; txxb@bjxintong.com.cn
期刊网站版权所有 © 2021 《通信学报》编辑部
地址:北京市丰台区东铁匠营街道顺八条1号院B座“北阳晨光大厦”2层
邮编:100079 电话:010-53878169、53859522、53878236
电子邮件:txxb@bjxintong.com.cn
区块链技术对人类社会的意义是什么? - 知乎
区块链技术对人类社会的意义是什么? - 知乎首发于炒币机器人切换模式写文章登录/注册区块链技术对人类社会的意义是什么?ofbing88ofbing88 ccr全自动炒币机器人从历史角度看,区块链的意义是什么?区块链真的会颠覆公司制度吗?区块链时代如何布局?区块链技术是一场社会革命,浪潮席卷全球,重新定义所有人、所有组织之间的协作关系。过往对区块链的讨论太集中于技术细节或者具体应用场景,技术让人看得似懂非懂,场景感觉天花乱坠。今天我们从革命的角度来理解区块链技术对人类社会的意义是什么?1. 人类的文明史是一部去中心化的历史2. 市场经济是一份智能合约3. 区块链协议会取代资本家,实现共产主义4. 数字货币的发展从历史角度看区块链人类的历史是去中心化的历史,从君主制到共和制,从计划经济到市场经济都是去中心化的历史。政治哲学的鼻祖托马斯霍布斯写的利维坦就是鼓吹君主制。臣民向君主效忠,君主负责维持秩序。但很快人们发现并不需要君主,君主其实就是一个中介,供养一个挥霍无度的君主中介费太高,共和政府同样可以维持秩序,并且社会契约论就类似智能合约,防止统治者胡来。托克维尔写的《论美国的民主》很好地阐述了美国就是一个区块链国家,在美国的乡镇,看不到政府官员,都是社区自治。这种结构非常类似 Decentralized Autonomous Organization (DAO,去中心化自治组织),美国的独立战争从区块链角度理解就是去中心化,不再受英王的盘剥,也没有弄出个“美王”来。而区块链是要把公司这个中心给取代掉。公司制度和区块链协议相比是一种落后的生产关系。如果说君主制是要让皇帝的利益最大化,那么公司制度就是要让股东的利益最大化,其代价是劳动者接受更低的工资和消费者支付更高的价格。股权即皇权,创始人一旦创业成功都是终身制、家族制(除非出售股权),一直源源不断地向市场吸金。而区块链协议更像总统制,创始人干成之后就可以退了。类比中本聪和华盛顿,都属于事了拂衣去,深藏功与名,把利益还给大众,而不是据为己有,代代相传。而现在公司制下的创始人,更像是唐宗宋祖,打江山坐江山,垄断市场,这么多影响大众的业务被一家家巨头垄断。如果说计划经济是国家垄断,那么市场经济在公司制度的背景下活生生地演变为军阀混战,寡头垄断。而区块链是要通过市场经济自由竞争,挤掉私有制巨头,实现天下为公。通过自由竞争来实现一个更加公平的社会,左右两派都十分满意,所以说区块链相比于公司制度是更先进的生产关系。接下来我用一个具体的例子来阐述区块链如何挤掉公司:像Uber、AirBnB这样的业务,本质上是信息中介,帮助撮合乘客和司机,租客和房东。现实是由中心化的公司来管理这些信息和数据,公司从交易额中抽取20%的手续费。但是信息的管理和撮合完全可以用区块链协议来实现。区块链协议没有股东,非盈利导向,没有业绩增长的压力,从而实现低手续费,让租客和房东都获益。核心原因是去掉了盈利性导向的公司。Uber的股东收益来源就是中介费的不断上涨。区块链协议打击了公司股份制,把原本被股东方吃掉的利润还给了乘客、司机、房东、租客。同时,由于区块链数据是开源的,学者和研究机构可以免费获取,为社会做贡献,不必屈身加入巨头,为股东做贡献。都说数据是AI时代的石油。巨头们垄断了业务,就是垄断了数据,就是垄断了AI,就是垄断了生产力。区块链抢夺巨头们的业务,用户的数据不再是巨头们的私有财产,而是全社会共享(当然用户隐私数据会加密),极大地发挥了数据应有的价值。人工智能和区块链会有怎么样的碰撞?工人的价值是提供劳动,资本家的价值是资源整合、组织协调。如果说人工智能让大公司资本家大幅自动化生产力,取代工人,扩大贫富差距,那么区块链能自动化资源整合的过程,取代资本家,缩小贫富差距。人工智能是让资本家绕过工人,直接对接消费者,从而压低成本、扩大利润。而区块链是让工人绕过资本家,直接对接消费者,从而消除剥削,提高收入。当然,随着人工智能和区块链的同时发展,最终资本家和工人一起下岗。区块链时代如何布局许多被动投资的践行者,往往杠杆重仓纳斯达克指数和标普500。其中的逻辑是:好公司最后都会被纳入到指数里面,公司会倒闭,但指数不会。那么投资指数就能享受经济成长和科技发展的红利。纳斯达克指数三倍杠杆在2017年涨了118%,今年虽然经历了股灾但到现在依然有21.9%的收益。指数流动性强,容量大,能避开个股风险,不花时间,所以越来越多的投资者都在买入并持有指数,连巴菲特都推荐标普500。但有个前提,就是公司制度不受挑战,区块链的诞生摧毁了这个前提。当上市公司业务被区块链颠覆,新的产品和服务以社区形式呈现而不是通过股份制公司,股市也就被抽干了。摧毁了公司制度,就是摧毁了传统的资本市场。巴菲特说加密货币会有个 bad ending,基于区块链更加先进的生产关系,公司制度也会有个 bad ending。股市和标普500会有个 bad ending,包括巴菲特的投资公司也会有个 bad ending。与互联网思维相对应的是区块链思维,互联网 公司开启了.com时代,区块链 开源社区,开启了.org时代。1.什么是区块链思维?中本聪没有注册一家公司,只是发了一份白皮书,贡献了一些代码,就让全世界人民自发地加入比特币世界里。有人负责生产矿机,有人负责挖矿,有人负责开交易所等等等等。大家没有拿中本聪一分钱,都是自带干粮的把这个生态系统和基础设施搭建好。而中本聪早已人间蒸发,啥事都不管。相比之下,很多企业家都是勤勤恳恳工作十几年,才能有所成就。2.为什么区块链有这么大的力量?一个是开源;另一个是代币。开源让全世界优秀的程序员自带干粮来开发区块链项目(前提是项目愿景够大),类似的例子是Linux操作系统和维基百科。微软需要雇佣上万民员工才能开发维护windows操作系统,维基百科是全世界最大的百科全书。可见开源的力量有多大,大幅降低开发的成本。基于去中心化,代币可以让持币人主动去做宣传推广,大幅降低市场营销成本,这也是为什么区块链项目看起来传销色彩这么严重的原因。开源社区和代币让区块链项目极大地降低开发和推广成本,这就是区块链思维的核心。发布于 2019-10-23 11:14区块链(Blockchain)人类社会区块链技术赞同 279 条评论分享喜欢收藏申请转载文章被以下专栏收录炒币机器人ofbing88 ccr全自动炒币
区块链技术研究综述:原理、进展与应用
区块链技术研究综述:原理、进展与应用
主管单位:中国科学技术协会
主办单位:中国通信学会
ISSN 1000-436X CN 11-2102/TN
首页
期刊简介
编委会
投稿指南
道德声明
期刊协议
期刊订阅
会议活动
下载中心
联系我们
English
期刊介绍
期刊信息
投稿须知
稿件格式要求
审稿流程
下载中心
联系方式
Toggle navigation
首页
期刊简介
期刊介绍
期刊信息
编委会
投稿指南
投稿须知
稿件格式要求
审稿流程
下载中心
道德声明
期刊协议
期刊订阅
会议活动
联系我们
English
通信学报, 2020, 41(1): 134-151 doi: 10.11959/j.issn.1000-436x.2020027
综述
区块链技术研究综述:原理、进展与应用
曾诗钦1, 霍如2,3, 黄韬1,3, 刘江1,3, 汪硕1,3, 冯伟4
1 北京邮电大学网络与交换国家重点实验室,北京 100876
2 北京工业大学北京未来网络科技高精尖创新中心,北京 100124
3 网络通信与安全紫金山实验室,江苏 南京 211111
4 工业和信息化部信息化和软件服务业司,北京 100846
Survey of blockchain:principle,progress and application
ZENG Shiqin1, HUO Ru2,3, HUANG Tao1,3, LIU Jiang1,3, WANG Shuo1,3, FENG Wei4
1 State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China
2 Beijing Advanced Innovation Center for Future Internet Technology,Beijing University of Technology,Beijing 100124,China
3 Purple Mountain Laboratories,Nanjing 211111,China
4 Department of Information Technology Application and Software Services,Beijing 100846,China
通讯作者: 霍如,huoru@bjut.edu.cn
修回日期: 2019-12-12
网络出版日期: 2020-01-25
基金资助:
国家高技术研究发展计划(“863”计划)基金资助项目. 2015AA015702未来网络操作系统发展战略研究基金资助项目. 2019-XY-5
Revised: 2019-12-12
Online: 2020-01-25
Fund supported:
The National High Technology Research and Development Program of China (863 Program). 2015AA015702The Development Strategy Research of Future Network Operating System. 2019-XY-5
作者简介 About authors
曾诗钦(1995-),男,广西南宁人,北京邮电大学博士生,主要研究方向为区块链、标识解析技术、工业互联网
。
霍如(1988-),女,黑龙江哈尔滨人,博士,北京工业大学讲师,主要研究方向为计算机网络、信息中心网络、网络缓存策略与算法、工业互联网、标识解析技术等。
。
黄韬(1980-),男,重庆人,博士,北京邮电大学教授,主要研究方向为未来网络体系架构、软件定义网络、网络虚拟化等。
。
刘江(1983-),男,河南郑州人,博士,北京邮电大学教授,主要研究方向为未来网络体系架构、软件定义网络、网络虚拟化、信息中心网络等。
。
汪硕(1991-),男,河南灵宝人,博士,北京邮电大学在站博士后,主要研究方向为数据中心网络、软件定义网络、网络流量调度等。
。
冯伟(1980-),男,河北邯郸人,博士,工业和信息化部副研究员,主要研究方向为工业互联网平台、数字孪生、信息化和工业化融合发展关键技术等
。
摘要
区块链是一种分布式账本技术,依靠智能合约等逻辑控制功能演变为完整的存储系统。其分类方式、服务模式和应用需求的变化导致核心技术形态的多样性发展。为了完整地认知区块链生态系统,设计了一个层次化的区块链技术体系结构,进一步深入剖析区块链每层结构的基本原理、技术关联以及研究进展,系统归纳典型区块链项目的技术选型和特点,最后给出智慧城市、工业互联网等区块链前沿应用方向,提出区块链技术挑战与研究展望。
关键词:
区块链
;
加密货币
;
去中心化
;
层次化技术体系结构
;
技术多样性
;
工业区块链
Abstract
Blockchain is a kind of distributed ledger technology that upgrades to a complete storage system by adding logic control functions such as intelligent contracts.With the changes of its classification,service mode and application requirements,the core technology forms of Blockchain show diversified development.In order to understand the Blockchain ecosystem thoroughly,a hierarchical technology architecture of Blockchain was proposed.Furthermore,each layer of blockchain was analyzed from the perspectives of basic principle,related technologies and research progress in-depth.Moreover,the technology selections and characteristics of typical Blockchain projects were summarized systematically.Finally,some application directions of blockchain frontiers,technology challenges and research prospects including Smart Cities and Industrial Internet were given.
Keywords:
blockchain
;
cryptocurrency
;
decentralization
;
hierarchical technology architecture
;
technology diversity
;
PDF (1174KB)
元数据
多维度评价
相关文章
导出
EndNote|
Ris|
Bibtex
收藏本文
本文引用格式
曾诗钦, 霍如, 黄韬, 刘江, 汪硕, 冯伟. 区块链技术研究综述:原理、进展与应用. 通信学报[J], 2020, 41(1): 134-151 doi:10.11959/j.issn.1000-436x.2020027
ZENG Shiqin. Survey of blockchain:principle,progress and application. Journal on Communications[J], 2020, 41(1): 134-151 doi:10.11959/j.issn.1000-436x.2020027
1 引言
2008年,中本聪提出了去中心化加密货币——比特币(bitcoin)的设计构想。2009年,比特币系统开始运行,标志着比特币的正式诞生。2010—2015 年,比特币逐渐进入大众视野。2016—2018年,随着各国陆续对比特币进行公开表态以及世界主流经济的不确定性增强,比特币的受关注程度激增,需求量迅速扩大。事实上,比特币是区块链技术最成功的应用场景之一。伴随着以太坊(ethereum)等开源区块链平台的诞生以及大量去中心化应用(DApp,decentralized application)的落地,区块链技术在更多的行业中得到了应用。
由于具备过程可信和去中心化两大特点,区块链能够在多利益主体参与的场景下以低成本的方式构建信任基础,旨在重塑社会信用体系。近两年来区块链发展迅速,人们开始尝试将其应用于金融、教育、医疗、物流等领域。但是,资源浪费、运行低效等问题制约着区块链的发展,这些因素造成区块链分类方式、服务模式和应用需求发生快速变化,进一步导致核心技术朝多样化方向发展,因此有必要采取通用的结构分析区块链项目的技术路线和特点,以梳理和明确区块链的研究方向。
区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值。袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势。上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析。本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望。
2 相关概念
随着区块链技术的深入研究,不断衍生出了很多相关的术语,例如“中心化”“去中心化”“公链”“联盟链”等。为了全面地了解区块链技术,并对区块链技术涉及的关键术语有系统的认知,本节将给出区块链及其相关概念的定义,以及它们的联系,更好地区分易使人混淆的术语。
2.1 中心化与去中心化
中心化(centralization)与去中心化(decentralization)最早用来描述社会治理权力的分布特征。从区块链应用角度出发,中心化是指以单个组织为枢纽构建信任关系的场景特点。例如,电子支付场景下用户必须通过银行的信息系统完成身份验证、信用审查和交易追溯等;电子商务场景下对端身份的验证必须依靠权威机构下发的数字证书完成。相反,去中心化是指不依靠单一组织进行信任构建的场景特点,该场景下每个组织的重要性基本相同。
2.2 加密货币
加密货币(cryptocurrency)是一类数字货币(digital currency)技术,它利用多种密码学方法处理货币数据,保证用户的匿名性、价值的有效性;利用可信设施发放和核对货币数据,保证货币数量的可控性、资产记录的可审核性,从而使货币数据成为具备流通属性的价值交换媒介,同时保护使用者的隐私。
加密货币的概念起源于一种基于盲签名(blind signature)的匿名交易技术[6],最早的加密货币交易模型“electronic cash”[7]如图1所示。
图1
新窗口打开|
下载原图ZIP|
生成PPT
图1
“electronic cash”交易模型
交易开始前,付款者使用银行账户兑换加密货币,然后将货币数据发送给领款者,领款者向银行发起核对请求,若该数据为银行签发的合法货币数据,那么银行将向领款者账户记入等额数值。通过盲签名技术,银行完成对货币数据的认证,而无法获得发放货币与接收货币之间的关联,从而保证了价值的有效性、用户的匿名性;银行天然具有发放币种、账户记录的能力,因此保证了货币数量的可控性与资产记录的可审核性。
最早的加密货币构想将银行作为构建信任的基础,呈现中心化特点。此后,加密货币朝着去中心化方向发展,并试图用工作量证明(PoW,poof of work)[8]或其改进方法定义价值。比特币在此基础上,采用新型分布式账本技术保证被所有节点维护的数据不可篡改,从而成功构建信任基础,成为真正意义上的去中心化加密货币。区块链从去中心化加密货币发展而来,随着区块链的进一步发展,去中心化加密货币已经成为区块链的主要应用之一。
2.3 区块链及工作流程
一般认为,区块链是一种融合多种现有技术的新型分布式计算和存储范式。它利用分布式共识算法生成和更新数据,并利用对等网络进行节点间的数据传输,结合密码学原理和时间戳等技术的分布式账本保证存储数据的不可篡改,利用自动化脚本代码或智能合约实现上层应用逻辑。如果说传统数据库实现数据的单方维护,那么区块链则实现多方维护相同数据,保证数据的安全性和业务的公平性。区块链的工作流程主要包含生成区块、共识验证、账本维护3个步骤。
1) 生成区块。区块链节点收集广播在网络中的交易——需要记录的数据条目,然后将这些交易打包成区块——具有特定结构的数据集。
2) 共识验证。节点将区块广播至网络中,全网节点接收大量区块后进行顺序的共识和内容的验证,形成账本——具有特定结构的区块集。
3) 账本维护。节点长期存储验证通过的账本数据并提供回溯检验等功能,为上层应用提供账本访问接口。
2.4 区块链类型
根据不同场景下的信任构建方式,可将区块链分为2类:非许可链(permissionless blockchain)和许可链(permissioned blockchain)。
非许可链也称为公链(public blockchain),是一种完全开放的区块链,即任何人都可以加入网络并参与完整的共识记账过程,彼此之间不需要信任。公链以消耗算力等方式建立全网节点的信任关系,具备完全去中心化特点的同时也带来资源浪费、效率低下等问题。公链多应用于比特币等去监管、匿名化、自由的加密货币场景。
许可链是一种半开放式的区块链,只有指定的成员可以加入网络,且每个成员的参与权各有不同。许可链往往通过颁发身份证书的方式事先建立信任关系,具备部分去中心化特点,相比于非许可链拥有更高的效率。进一步,许可链分为联盟链(consortium blockchain)和私链(fully private blockchain)。联盟链由多个机构组成的联盟构建,账本的生成、共识、维护分别由联盟指定的成员参与完成。在结合区块链与其他技术进行场景创新时,公链的完全开放与去中心化特性并非必需,其低效率更无法满足需求,因此联盟链在某些场景中成为实适用性更强的区块链选型。私链相较联盟链而言中心化程度更高,其数据的产生、共识、维护过程完全由单个组织掌握,被该组织指定的成员仅具有账本的读取权限。
3 区块链体系结构
根据区块链发展现状,本节将归纳区块链的通用层次技术结构、基本原理和研究进展。
现有项目的技术选型多数由比特币演变而来,所以区块链主要基于对等网络通信,拥有新型的基础数据结构,通过全网节点共识实现公共账本数据的统一。但是区块链也存在效率低、功耗大和可扩展性差等问题,因此人们进一步以共识算法、处理模型、交易模式创新为切入点进行技术方案改进,并在此基础上丰富了逻辑控制功能和区块链应用功能,使其成为一种新型计算模式。本文给出如图2 所示的区块链通用层次化技术结构,自下而上分别为网络层、数据层、共识层、控制层和应用层。其中,网络层是区块链信息交互的基础,承载节点间的共识过程和数据传输,主要包括建立在基础网络之上的对等网络及其安全机制;数据层包括区块链基本数据结构及其原理;共识层保证节点数据的一致性,封装各类共识算法和驱动节点共识行为的奖惩机制;控制层包括沙盒环境、自动化脚本、智能合约和权限管理等,提供区块链可编程特性,实现对区块数据、业务数据、组织结构的控制;应用层包括区块链的相关应用场景和实践案例,通过调用控制合约提供的接口进行数据交互,由于该层次不涉及区块链原理,因此在第 5节中单独介绍。
3.1 网络层
网络层关注区块链网络的基础通信方式——对等(P2P,peer-to-peer)网络。对等网络是区别于“客户端/服务器”服务模式的计算机通信与存储架构,网络中每个节点既是数据的提供者也是数据的使用者,节点间通过直接交换实现计算机资源与信息的共享,因此每个节点地位均等。区块链网络层由组网结构、通信机制、安全机制组成。其中组网结构描述节点间的路由和拓扑关系,通信机制用于实现节点间的信息交互,安全机制涵盖对端安全和传输安全。
图2
新窗口打开|
下载原图ZIP|
生成PPT
图2
区块链层次化技术结构
1) 组网结构
对等网络的体系架构可分为无结构对等网络、结构化对等网络和混合式对等网络[9],根据节点的逻辑拓扑关系,区块链网络的组网结构也可以划分为上述3种,如图3所示。
图3
新窗口打开|
下载原图ZIP|
生成PPT
图3
区块链组网结构
无结构对等网络是指网络中不存在特殊中继节点、节点路由表的生成无确定规律、网络拓扑呈现随机图状的一类对等网络。该类网络结构松散,设计简洁,具有良好的容错性和匿名性,但由于采用洪泛机制作为信息传播方式,其可扩展性较差。典型的协议有Gnutella等。
结构化对等网络是指网络中不存在特殊中继节点、节点间根据特定算法生成路由表、网络拓扑具有严格规律的一类对等网络。该类网络实现复杂但可扩展性良好,通过结构化寻址可以精确定位节点从而实现多样化功能。常见的结构化网络以DHT (distributed hash table)网络为主,典型的算法有Chord、Kademlia等。
混合式对等网络是指节点通过分布式中继节点实现全网消息路由的一类对等网络。每个中继节点维护部分网络节点地址、文件索引等工作,共同实现数据中继的功能。典型的协议有Kazza等。
2) 通信机制
通信机制是指区块链网络中各节点间的对等通信协议,建立在 TCP/UDP 之上,位于计算机网络协议栈的应用层,如图4所示。该机制承载对等网络的具体交互逻辑,例如节点握手、心跳检测、交易和区块传播等。由于包含的协议功能不同(例如基础链接与扩展交互),本文将通信机制细分为3个层次:传播层、连接层和交互逻辑层。
传播层实现对等节点间数据的基本传输,包括2 种数据传播方式:单点传播和多点传播。单点传播是指数据在2个已知节点间直接进行传输而不经过其他节点转发的传播方式;多点传播是指接收数据的节点通过广播向邻近节点进行数据转发的传播方式,区块链网络普遍基于Gossip协议[10]实现洪泛传播。连接层用于获取节点信息,监测和改变节点间连通状态,确保节点间链路的可用性(availability)。具体而言,连接层协议帮助新加入节点获取路由表数据,通过定时心跳监测为节点保持稳定连接,在邻居节点失效等情况下为节点关闭连接等。交互逻辑层是区块链网络的核心,从主要流程上看,该层协议承载对等节点间账本数据的同步、交易和区块数据的传输、数据校验结果的反馈等信息交互逻辑,除此之外,还为节点选举、共识算法实施等复杂操作和扩展应用提供消息通路。
图4
新窗口打开|
下载原图ZIP|
生成PPT
图4
区块链网络通信机制
3) 安全机制
安全是每个系统必须具备的要素,以比特币为代表的非许可链利用其数据层和共识层的机制,依靠消耗算力的方式保证数据的一致性和有效性,没有考虑数据传输过程的安全性,反而将其建立在不可信的透明P2P网络上。随着隐私保护需求的提出,非许可链也采用了一些网络匿名通信方法,例如匿名网络Tor(the onion router)通过沿路径的层层数据加密机制来保护对端身份。许可链对成员的可信程度有更高的要求,在网络层面采取适当的安全机制,主要包括身份安全和传输安全两方面。身份安全是许可链的主要安全需求,保证端到端的可信,一般采用数字签名技术实现,对节点的全生命周期(例如节点交互、投票、同步等)进行签名,从而实现许可链的准入许可。传输安全防止数据在传输过程中遭到篡改或监听,常采用基于TLS的点对点传输和基于Hash算法的数据验证技术。
4) 研究现状
目前,区块链网络层研究主要集中在3个方向:测量优化、匿名分析与隐私保护、安全防护。
随着近年来区块链网络的爆炸式发展以及开源特点,学术界开始关注大型公有链项目的网络状况,监测并研究它们的特点,研究对象主要为比特币网络。Decker等[11]设计和实现测量工具,分析传播时延数据、协议数据和地址数据,建模分析影响比特币网络性能的网络层因素,基于此提出各自的优化方法。Fadhil等[12]提出基于事件仿真的比特币网络仿真模型,利用真实测量数据验证模型的有效性,最后提出优化机制 BCBSN,旨在设立超级节点降低网络波动。Kaneko 等[13]将区块链节点分为共识节点和验证节点,其中共识节点采用无结构组网方式,验证节点采用结构化组网方式,利用不同组网方式的优点实现网络负载的均衡。
匿名性是加密货币的重要特性之一,但从网络层视角看,区块链的匿名性并不能有效保证,因为攻击者可以利用监听并追踪 IP 地址的方式推测出交易之间、交易与公钥地址之间的关系,通过匿名隐私研究可以主动发掘安全隐患,规避潜在危害。Koshy 等[16,17]从网络拓扑、传播层协议和作恶模型3个方面对比特币网络进行建模,通过理论分析和仿真实验证明了比特币网络协议在树形组网结构下仅具备弱匿名性,在此基础上提出 Dandelion 网络策略以较低的网络开销优化匿名性,随后又提出 Dandelion++原理,以最优信息理论保证来抵抗大规模去匿名攻击。
区块链重点关注其数据层和共识层面机制,并基于普通网络构建开放的互联环境,该方式极易遭受攻击。为提高区块链网络的安全性,学术界展开研究并给出了相应的解决方案。Heilman 等[18]对比特币和以太坊网络实施日蚀攻击(eclipse attack)——通过屏蔽正确节点从而完全控制特定节点的信息来源,证实了该攻击的可行性。Apostolaki等[19]提出针对比特币网络的 BGP(border gateway protocal)劫持攻击,通过操纵自治域间路由或拦截域间流量来制造节点通信阻塞,表明针对关键数据的沿路攻击可以大大降低区块传播性能。
3.2 数据层
区块链中的“块”和“链”都是用来描述其数据结构特征的词汇,可见数据层是区块链技术体系的核心。区块链数据层定义了各节点中数据的联系和组织方式,利用多种算法和机制保证数据的强关联性和验证的高效性,从而使区块链具备实用的数据防篡改特性。除此之外,区块链网络中每个节点存储完整数据的行为增加了信息泄露的风险,隐私保护便成为迫切需求,而数据层通过非对称加密等密码学原理实现了承载应用信息的匿名保护,促进区块链应用普及和生态构建。因此,从不同应用信息的承载方式出发,考虑数据关联性、验证高效性和信息匿名性需求,可将数据层关键技术分为信息模型、关联验证结构和加密机制3类。
1) 信息模型
区块链承载了不同应用的数据(例如支付记录、审计数据、供应链信息等),而信息模型则是指节点记录应用信息的逻辑结构,主要包括UTXO (unspent transaction output)、基于账户和键值对模型3种。需要说明的是,在大部分区块链网络中,每个用户均被分配了交易地址,该地址由一对公私钥生成,使用地址标识用户并通过数字签名的方式检验交易的有效性。
UTXO是比特币交易中的核心概念,逐渐演变为区块链在金融领域应用的主要信息模型,如图5所示。每笔交易(Tx)由输入数据(Input)和输出数据(Output)组成,输出数据为交易金额(Num)和用户公钥地址(Adr),而输入数据为上一笔交易输出数据的指针(Pointer),直到该比特币的初始交易由区块链网络向节点发放。
图5
新窗口打开|
下载原图ZIP|
生成PPT
图5
UTXO信息模型
基于账户的信息模型以键值对的形式存储数据,维护着账户当前的有效余额,通过执行交易来不断更新账户数据。相比于UTXO,基于账户的信息模型与银行的储蓄账户类似,更直观和高效。
不管是UTXO还是基于账户的信息模型,都建立在更为通用的键值对模型上,因此为了适应更广泛的应用场景,键值对模型可直接用于存储业务数据,表现为表单或集合形式。该模型利于数据的存取并支持更复杂的业务逻辑,但是也存在复杂度高的问题。
2) 关联验证结构
区块链之所以具备防篡改特性,得益于链状数据结构的强关联性。该结构确定了数据之间的绑定关系,当某个数据被篡改时,该关系将会遭到破坏。由于伪造这种关系的代价是极高的,相反检验该关系的工作量很小,因此篡改成功率被降至极低。链状结构的基本数据单位是“区块(block)”,基本内容如图6所示。
图6
新窗口打开|
下载原图ZIP|
生成PPT
图6
基本区块结构
区块由区块头(Header)和区块体(Body)两部分组成,区块体包含一定数量的交易集合;区块头通过前继散列(PrevHash)维持与上一区块的关联从而形成链状结构,通过MKT(MerkleTree)生成的根散列(RootHash)快速验证区块体交易集合的完整性。因此散列算法和 MKT 是关联验证结构的关键,以下将对此展开介绍。
散列(Hash)算法也称为散列函数,它实现了明文到密文的不可逆映射;同时,散列算法可以将任意长度的输入经过变化得到固定长度的输出;最后,即使元数据有细微差距,变化后的输出也会产生显著不同。利用散列算法的单向、定长和差异放大的特征,节点通过比对当前区块头的前继散列即可确定上一区块内容的正确性,使区块的链状结构得以维系。区块链中常用的散列算法包括SHA256等。
MKT包括根散列、散列分支和交易数据。MKT首先对交易进行散列运算,再对这些散列值进行分组散列,最后逐级递归直至根散列。MKT 带来诸多好处:一方面,对根散列的完整性确定即间接地实现交易的完整性确认,提升高效性;另一方面,根据交易的散列路径(例如 Tx1:Hash2、Hash34)可降低验证某交易存在性的复杂度,若交易总数为N,那么MKT可将复杂度由N降为lbN。除此之外,还有其他数据结构与其配合使用,例如以太坊通过MPT(Merkle Patricia tree)——PatriciaTrie 和MerkleTree混合结构,高效验证其基于账户的信息模型数据。
此外,区块头中还可根据不同项目需求灵活添加其他信息,例如添加时间戳为区块链加入时间维度,形成时序记录;添加记账节点标识,以维护成块节点的权益;添加交易数量,进一步提高区块体数据的安全性。
3) 加密机制
由上述加密货币原理可知,经比特币演变的区块链技术具备与生俱来的匿名性,通过非对称加密等技术既保证了用户的隐私又检验了用户身份。非对称加密技术是指加密者和解密者利用2个不同秘钥完成加解密,且秘钥之间不能相互推导的加密机制。常用的非对称加密算法包括 RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)等。对应图5,Alice 向 Bob 发起交易 Tx2,Alice使用Bob的公钥对交易签名,仅当Bob使用私钥验证该数字签名时,才有权利创建另一笔交易,使自身拥有的币生效。该机制将公钥作为基础标识用户,使用户身份不可读,一定程度上保护了隐私。
4) 研究现状
数据层面的研究方向集中在高效验证、匿名分析、隐私保护3个方面。
高效验证的学术问题源于验证数据结构(ADS,authenticated data structure),即利用特定数据结构快速验证数据的完整性,实际上 MKT 也是其中的一种。为了适应区块链数据的动态性(dynamical)并保持良好性能,学术界展开了研究。Reyzin等[20]基于AVL树形结构提出AVL+,并通过平衡验证路径、缺省堆栈交易集等机制,简化轻量级节点的区块头验证过程。Zhang等[21]提出GEM2-tree结构,并对其进行优化提出 GEM2כ-tree 结构,通过分解单树结构、动态调整节点计算速度、扩展数据索引等机制降低以太坊节点计算开销。
区块数据直接承载业务信息,因此区块数据的匿名关联性分析更为直接。Reid等[22]将区块数据建模为事务网络和用户网络,利用多交易数据的用户指向性分析成功降低网络复杂度。Meiklejohn等[23]利用启发式聚类方法分析交易数据的流动特性并对用户进行分组,通过与这些服务的互动来识别主要机构的比特币地址。Awan 等[24]使用优势集(dominant set)方法对区块链交易进行自动分类,从而提高分析准确率。
隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私。Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性。非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成。
3.3 共识层
区块链网络中每个节点必须维护完全相同的账本数据,然而各节点产生数据的时间不同、获取数据的来源未知,存在节点故意广播错误数据的可能性,这将导致女巫攻击[29]、双花攻击[30]等安全风险;除此之外,节点故障、网络拥塞带来的数据异常也无法预测。因此,如何在不可信的环境下实现账本数据的全网统一是共识层解决的关键问题。实际上,上述错误是拜占庭将军问题(the Byzantine generals problem)[31]在区块链中的具体表现,即拜占庭错误——相互独立的组件可以做出任意或恶意的行为,并可能与其他错误组件产生协作,此类错误在可信分布式计算领域被广泛研究。
状态机复制(state-machine replication)是解决分布式系统容错问题的常用理论。其基本思想为:任何计算都表示为状态机,通过接收消息来更改其状态。假设一组副本以相同的初始状态开始,并且能够就一组公共消息的顺序达成一致,那么它们可以独立进行状态的演化计算,从而正确维护各自副本之间的一致性。同样,区块链也使用状态机复制理论解决拜占庭容错问题,如果把每个节点的数据视为账本数据的副本,那么节点接收到的交易、区块即为引起副本状态变化的消息。状态机复制理论实现和维持副本的一致性主要包含2个要素:正确执行计算逻辑的确定性状态机和传播相同序列消息的共识协议。其中,共识协议是影响容错效果、吞吐量和复杂度的关键,不同安全性、可扩展性要求的系统需要的共识协议各有不同。学术界普遍根据通信模型和容错类型对共识协议进行区分[32],因此严格地说,区块链使用的共识协议需要解决的是部分同步(partial synchrony)模型[33]下的拜占庭容错问题。
区块链网络中主要包含PoX(poof of X)[34]、BFT(byzantine-fault tolerant)和 CFT(crash-fault tolerant)类基础共识协议。PoX 类协议是以 PoW (proof of work)为代表的基于奖惩机制驱动的新型共识协议,为了适应数据吞吐量、资源利用率和安全性的需求,人们又提出PoS(proof of stake)、PoST (proof of space-time)等改进协议。它们的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错。BFT类协议是指解决拜占庭容错问题的传统共识协议及其改良协议,包括PBFT、BFT-SMaRt、Tendermint等。CFT类协议用于实现崩溃容错,通过身份证明等手段规避节点作恶的情况,仅考虑节点或网络的崩溃(crash)故障,主要包括Raft、Paxos、Kafka等协议。
非许可链和许可链的开放程度和容错需求存在差异,共识层面技术在两者之间产生了较大区别。具体而言,非许可链完全开放,需要抵御严重的拜占庭风险,多采用PoX、BFT类协议并配合奖惩机制实现共识。许可链拥有准入机制,网络中节点身份可知,一定程度降低了拜占庭风险,因此可采用BFT类协议、CFT类协议构建相同的信任模型[35]。
限于篇幅原因,本节仅以 PoW、PBFT、Raft为切入进行3类协议的分析。
1) PoX类协议
PoW也称为Nakamoto协议,是比特币及其衍生项目使用的核心共识协议,如图7所示。
图7
新窗口打开|
下载原图ZIP|
生成PPT
图7
PoW协议示意
该协议在区块链头结构中加入随机数Nonce,并设计证明依据:为生成新区块,节点必须计算出合适的 Nonce 值,使新生成的区块头经过双重SHA256 运算后小于特定阈值。该协议的整体流程为:全网节点分别计算证明依据,成功求解的节点确定合法区块并广播,其余节点对合法区块头进行验证,若验证无误则与本地区块形成链状结构并转发,最终达到全网共识。PoW是随机性协议,任何节点都有可能求出依据,合法区块的不唯一将导致生成分支链,此时节点根据“最长链原则”选择一定时间内生成的最长链作为主链而抛弃其余分支链,从而使各节点数据最终收敛。
PoW协议采用随机性算力选举机制,实现拜占庭容错的关键在于记账权的争夺,目前寻找证明依据的方法只有暴力搜索,其速度完全取决于计算芯片的性能,因此当诚实节点数量过半,即“诚实算力”过半时,PoW便能使合法分支链保持最快的增长速度,也即保证主链一直是合法的。PoW是一种依靠饱和算力竞争纠正拜占庭错误的共识协议,关注区块产生、传播过程中的拜占庭容错,在保证防止双花攻击的同时也存在资源浪费、可扩展性差等问题。
2) BFT类协议
PBFT是 BFT经典共识协议,其主要流程如图8 所示。PBFT将节点分为主节点和副节点,其中主节点负责将交易打包成区块,副节点参与验证和转发,假设作恶节点数量为f。PBFT共识主要分为预准备、准备和接受3个阶段,主节点首先收集交易后排序并提出合法区块提案;其余节点先验证提案的合法性,然后根据区块内交易顺序依次执行并将结果摘要组播;各节点收到2f个与自身相同的摘要后便组播接受投票;当节点收到超过2f+1个投票时便存储区块及其产生的新状态[36]。
图8
新窗口打开|
下载原图ZIP|
生成PPT
图8
PBFT协议示意
PBFT 协议解决消息传播过程的拜占庭容错,由于算法复杂度为 O(n2)且存在确定性的主节点选举规则,PBFT 仅适用于节点数量少的小型许可链系统。
3) CFT类协议
Raft[37]是典型的崩溃容错共识协议,以可用性强著称。Raft将节点分为跟随节点、候选节点和领导节点,领导节点负责将交易打包成区块,追随节点响应领导节点的同步指令,候选节点完成领导节点的选举工作。当网络运行稳定时,只存在领导节点和追随节点,领导节点向追随节点推送区块数据从而实现同步。节点均设置生存时间决定角色变化周期,领导节点的心跳信息不断重置追随节点的生存时间,当领导节点发生崩溃时,追随节点自动转化为候选节点并进入选举流程,实现网络自恢复。
Raft协议实现崩溃容错的关键在于领导节点的自选举机制,部分许可链选择降低可信需求,将拜占庭容错转换为崩溃容错,从而提升共识速度。
4) 奖惩机制
奖惩机制包括激励机制与惩罚策略,其中激励机制是为了弥补节点算力消耗、平衡协议运行收益比的措施,当节点能够在共识过程中获得收益时才会进行记账权的争夺,因此激励机制利用经济效益驱动各共识协议可持续运行。激励机制一般基于价值均衡理论设计,具有代表性的机制包括PPLNS、PPS等。为了实现收益最大化,节点可能采用不诚实的运行策略(如扣块攻击、自私挖矿等),损害了诚实节点的利益,惩罚策略基于博弈论等理论对节点进行惩罚,从而纠正不端节点的行为,维护共识可持续性。
5) 研究现状
随着可扩展性和性能需求的多样化发展,除了传统的BFT、CFT协议和PoX协议衍生研究,还产生了混合型协议(Hybrid)——主要为 PoX类协议混合以及PoX-BFT协议混合。因此本节从PoX类、BFT类以及Hybrid类协议归纳共识层研究进展。
如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错。uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费。PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块。PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举。Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性。PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用。
BFT协议有较长的发展史,在区块链研究中被赋予了新的活力。SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识。Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性。HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致。LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能。
Hybrid 类协议是研究趋势之一。PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享。PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力。ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延。Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份。
3.4 控制层
区块链节点基于对等通信网络与基础数据结构进行区块交互,通过共识协议实现数据一致,从而形成了全网统一的账本。控制层是各类应用与账本产生交互的中枢,如果将账本比作数据库,那么控制层提供了数据库模型,以及相应封装、操作的方法。具体而言,控制层由处理模型、控制合约和执行环境组成。处理模型从区块链系统的角度分析和描述业务/交易处理方式的差异。控制合约将业务逻辑转化为交易、区块、账本的具体操作。执行环境为节点封装通用的运行资源,使区块链具备稳定的可移植性。
1) 处理模型
账本用于存储全部或部分业务数据,那么依据该数据的分布特征可将处理模型分为链上(on-chain)和链下(off-chain)2种。
链上模型是指业务数据完全存储在账本中,业务逻辑通过账本的直接存取实现数据交互。该模型的信任基础建立在强关联性的账本结构中,不仅实现防篡改而且简化了上层控制逻辑,但是过量的资源消耗与庞大的数据增长使系统的可扩展性达到瓶颈,因此该模型适用于数据量小、安全性强、去中心化和透明程度高的业务。
链下模型是指业务数据部分或完全存储在账本之外,只在账本中存储指针以及其他证明业务数据存在性、真实性和有效性的数据。该模型以“最小化信任成本”为准则,将信任基础建立在账本与链下数据的证明机制中,降低账本构建成本。由于与公开的账本解耦,该模型具有良好的隐私性和可拓展性,适用于去中心化程度低、隐私性强、吞吐量大的业务。
2) 控制合约
区块链中控制合约经历了2个发展阶段,首先是以比特币为代表的非图灵完备的自动化脚本,用于锁定和解锁基于UTXO信息模型的交易,与强关联账本共同克服了双花等问题,使交易数据具备流通价值。其次是以以太坊为代表的图灵完备的智能合约,智能合约是一种基于账本数据自动执行的数字化合同,由开发者根据需求预先定义,是上层应用将业务逻辑编译为节点和账本操作集合的关键。智能合约通过允许相互不信任的参与者在没有可信第三方的情况下就复杂合同的执行结果达成协议,使合约具备可编程性,实现业务逻辑的灵活定义并扩展区块链的使用。
3) 执行环境
执行环境是指执行控制合约所需要的条件,主要分为原生环境和沙盒环境。原生环境是指合约与节点系统紧耦合,经过源码编译后直接执行,该方式下合约能经历完善的静态分析,提高安全性。沙盒环境为节点运行提供必要的虚拟环境,包括网络通信、数据存储以及图灵完备的计算/控制环境等,在虚拟机中运行的合约更新方便、灵活性强,其产生的漏洞也可能造成损失。
4) 研究现状
控制层的研究方向主要集中在可扩展性优化与安全防护2个方面。
侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷。Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花。Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余。分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载。ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证。OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性。区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障。上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案。实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付。Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认。
一方面,沙盒环境承载了区块链节点运行条件,针对虚拟机展开的攻击更为直接;另一方面,智能合约直接对账本进行操作,其漏洞更易影响业务运行,因此控制层的安全防护研究成为热点。Luu等[59]分析了运行于EVM中的智能合约安全性,指出底层平台的分布式语义差异带来的安全问题。Brent 等[60]提出智能合约安全分析框架 Vandal,将EVM 字节码转换为语义逻辑关,为分析合约安全漏洞提供便利。Jiang 等[61]预先定义用于安全漏洞的特征,然后模拟执行大规模交易,通过分析日志中的合约行为实现漏洞检测。
4 技术选型分析
区别于其他技术,区块链发展过程中最显著的特点是与产业界紧密结合,伴随着加密货币和分布式应用的兴起,业界出现了许多区块链项目。这些项目是区块链技术的具体实现,既有相似之处又各具特点,本节将根据前文所述层次化结构对比特币、以太坊和超级账本Fabric项目进行分析,然后简要介绍其他代表性项目并归纳和对比各项目的技术选型及特点。
4.1 比特币
比特币是目前规模最大、影响范围最广的非许可链开源项目。图9为比特币项目以账本为核心的运行模式,也是所有非许可链项目的雏形。比特币网络为用户提供兑换和转账业务,该业务的价值流通媒介由账本确定的交易数据——比特币支撑。为了保持账本的稳定和数据的权威性,业务制定奖励机制,即账本为节点产生新的比特币或用户支付比特币,以此驱动节点共同维护账本。
图9
新窗口打开|
下载原图ZIP|
生成PPT
图9
比特币运行模式
比特币网络主要由2种节点构成:全节点和轻节点。全节点是功能完备的区块链节点,而轻节点不存储完整的账本数据,仅具备验证与转发功能。全节点也称为矿工节点,计算证明依据的过程被称为“挖矿”,目前全球拥有近 1 万个全节点;矿池则是依靠奖励分配策略将算力汇集起来的矿工群;除此之外,还有用于存储私钥和地址信息、发起交易的客户端(钱包)。
1) 网络层
比特币在网络层采用非结构化方式组网,路由表呈现随机性。节点间则采用多点传播方式传递数据,曾基于Gossip协议实现,为提高网络的抗匿名分析能力改为基于Diffusion协议实现[33]。节点利用一系列控制协议确保链路的可用性,包括版本获取(Vetsion/Verack)、地址获取(Addr/GetAddr)、心跳信息(PING/PONG)等。新节点入网时,首先向硬编码 DNS 节点(种子节点)请求初始节点列表;然后向初始节点随机请求它们路由表中的节点信息,以此生成自己的路由表;最后节点通过控制协议与这些节点建立连接,并根据信息交互的频率更新路由表中节点时间戳,从而保证路由表中的节点都是活动的。交互逻辑层为建立共识交互通道,提供了区块获取(GetBlock)、交易验证(MerkleBlock)、主链选择(CmpctBlock)等协议;轻节点只需要进行简单的区块头验证,因此通过头验证(GetHeader/Header)协议和连接层中的过滤设置协议指定需要验证的区块头即可建立简单验证通路。在安全机制方面,比特币网络可选择利用匿名通信网络Tor作为数据传输承载,通过沿路径的层层数据加密机制来保护对端身份。
2) 数据层
比特币数据层面的技术选型已经被广泛研究,使用UTXO信息模型记录交易数据,实现所有权的简单、有效证明,利用 MKT、散列函数和时间戳实现区块的高效验证并产生强关联性。在加密机制方面,比特币采用参数为Secp256k1的椭圆曲线数字签名算法(ECDSA,elliptic curve digital signature algorithm)生成用户的公私钥,钱包地址则由公钥经过双重散列、Base58Check 编码等步骤生成,提高了可读性。
3) 共识层
比特币采用 PoW 算法实现节点共识,该算法证明依据中的阈值设定可以改变计算难度。计算难度由每小时生成区块的平均块数决定,如果生成得太快,难度就会增加。该机制是为了应对硬件升级或关注提升引起的算力变化,保持证明依据始终有效。目前该阈值被设定为10 min产出一个区块。除此之外,比特币利用奖惩机制保证共识的可持续运行,主要包括转账手续费、挖矿奖励和矿池分配策略等。
4) 控制层
比特币最初采用链上处理模型,并将控制语句直接记录在交易中,使用自动化锁定/解锁脚本验证UTXO模型中的比特币所有权。由于可扩展性和确认时延的限制,比特币产生多个侧链项目如Liquid、RSK、Drivechain等,以及链下处理项目Lightning Network等,从而优化交易速度。
4.2 以太坊
以太坊是第一个以智能合约为基础的可编程非许可链开源平台项目,支持使用区块链网络构建分布式应用,包括金融、音乐、游戏等类型;当满足某些条件时,这些应用将触发智能合约与区块链网络产生交互,以此实现其网络和存储功能,更重要的是衍生出更多场景应用和价值产物,例如以太猫,利用唯一标识为虚拟猫赋予价值;GitCoin,众筹软件开发平台等。
1) 网络层
以太坊底层对等网络协议簇称为DEVP2P,除了满足区块链网络功能外,还满足与以太坊相关联的任何联网应用程序的需求。DEVP2P将节点公钥作为标识,采用 Kademlia 算法计算节点的异或距离,从而实现结构化组网。DEVP2P主要由3种协议组成:节点发现协议RLPx、基础通信协议Wire和扩展协议Wire-Sub。节点间基于Gossip实现多点传播;新节点加入时首先向硬编码引导节点(bootstrap node)发送入网请求;然后引导节点根据Kademlia 算法计算与新节点逻辑距离最近的节点列表并返回;最后新节点向列表中节点发出握手请求,包括网络版本号、节点ID、监听端口等,与这些节点建立连接后则使用Ping/Pong机制保持连接。Wire子协议构建了交易获取、区块同步、共识交互等逻辑通路,与比特币类似,以太坊也为轻量级钱包客户端设计了简易以太坊协议(LES,light ethereum subprotocol)及其变体PIP。安全方面,节点在RLPx协议建立连接的过程中采用椭圆曲线集成加密方案(ECIES)生成公私钥,用于传输共享对称密钥,之后节点通过共享密钥加密承载数据以实现数据传输保护。
2) 数据层
以太坊通过散列函数维持区块的关联性,采用MPT实现账户状态的高效验证。基于账户的信息模型记录了用户的余额及其他 ERC 标准信息,其账户类型主要分为2类:外部账户和合约账户;外部账户用于发起交易和创建合约,合约账户用于在合约执行过程中创建交易。用户公私钥的生成与比特币相同,但是公钥经过散列算法Keccak-256计算后取20 B作为外部账户地址。
3) 共识层
以太坊采用 PoW 共识,将阈值设定为 15 s产出一个区块,计划在未来采用PoS或Casper共识协议。较低的计算难度将导致频繁产生分支链,因此以太坊采用独有的奖惩机制——GHOST 协议,以提高矿工的共识积极性。具体而言,区块中的散列值被分为父块散列和叔块散列,父块散列指向前继区块,叔块散列则指向父块的前继。新区块产生时,GHOST 根据前 7 代区块的父/叔散列值计算矿工奖励,一定程度弥补了分支链被抛弃时浪费的算力。
4) 控制层
每个以太坊节点都拥有沙盒环境 EVM,用于执行Solidity语言编写的智能合约;Solidity语言是图灵完备的,允许用户方便地定义自己的业务逻辑,这也是众多分布式应用得以开发的前提。为优化可扩展性,以太坊拥有侧链项目 Loom、链下计算项目Plasma,而分片技术已于2018年加入以太坊源码。
4.3 超级账本Fabric
超级账本是Linux基金会旗下的开源区块链项目,旨在提供跨行业区块链解决方案。Fabric 是超级账本子项目之一,也是影响最广的企业级可编程许可链项目;在已知的解决方案中,Fabric 被应用于供应链、医疗和金融服务等多种场景。
1) 网络层
Fabric 网络以组织为单位构建节点集群,采用混合式对等网络组网;每个组织中包括普通节点和锚节点(anchor peer),普通节点完成组织内的消息路由,锚节点负责跨组织的节点发现与消息路由。Fabric网络传播层基于Gossip实现,需要使用配置文件初始化网络,网络生成后各节点将定期广播存活信息,其余节点根据该信息更新路由表以保持连接。交互逻辑层采用多通道机制,即相同通道内的节点才能进行状态信息交互和区块同步。Fabric 为许可链,因此在网络层采取严苛的安全机制:节点被颁发证书及密钥对,产生PKI-ID进行身份验证;可选用 TLS 双向加密通信;基于多通道的业务隔离;可定义策略指定通道内的某些节点对等传输私有数据。
2) 数据层
Fabric的区块中记录读写集(read-write set)描述交易执行时的读写过程。该读写集用于更新状态数据库,而状态数据库记录了键、版本和值组成的键值对,因此属于键值对信息模型。一方面,散列函数和 MerkleTree 被用作高效关联结构的实现技术;另一方面,节点还需根据键值验证状态数据库与读写集中的最新版本是否一致。许可链场景对匿名性的要求较低,但对业务数据的隐私性要求较高,因此Fabric 1.2版本开始提供私有数据集(PDC,private data collection)功能。
3) 共识层
Fabric在0.6版本前采用PBFT 共识协议,但是为了提高交易吞吐量,Fabric 1.0 选择降低安全性,将共识过程分解为排序和验证2种服务,排序服务采用CFT类协议Kafka、Raft(v1.4之后)完成,而验证服务进一步分解为读写集验证与多签名验证,最大程度提高了共识速度。由于Fabric针对许可链场景,参与方往往身份可知且具有相同的合作意图,因此规避了节点怠工与作恶的假设,不需要奖惩机制调节。
4) 控制层
Fabric 对于扩展性优化需求较少,主要得益于共识层的优化与许可链本身参与节点较少的前提,因此主要采用链上处理模型,方便业务数据的存取;而 PDC 中仅将私有数据散列值上链的方式则属于链下处理模型,智能合约可以在本地进行数据存取。Fabric 节点采用模块化设计,基于 Docker构建模块执行环境;智能合约在Fabric中被称为链码,使用GO、Javascript和Java语言编写,也是图灵完备的。
4.4 其他项目
除了上述3种区块链基础项目外,产业界还有许多具有代表性的项目,如表1所示。
5 区块链应用研究
区块链技术有助于降低金融机构间的审计成本,显著提高支付业务的处理速度及效率,可应用于跨境支付等金融场景。除此之外,区块链还应用于产权保护、信用体系建设、教育生态优化、食品安全监管、网络安全保障等非金融场景。
根据这些场景的应用方式以及区块链技术特点,可将区块链特性概括为如下几点。1) 去中心化。节点基于对等网络建立通信和信任背书,单一节点的破坏不会对全局产生影响。2) 不可篡改。账本由全体节点维护,群体协作的共识过程和强关联的数据结构保证节点数据一致且基本无法被篡改,进一步使数据可验证和追溯。3) 公开透明。除私有数据外,链上数据对每个节点公开,便于验证数据的存在性和真实性。4) 匿名性。多种隐私保护机制使用户身份得以隐匿,即便如此也能建立信任基础。5) 合约自治。预先定义的业务逻辑使节点可以基于高可信的账本数据实现自治,在人-人、人-机、机-机交互间自动化执行业务。
鉴于上述领域的应用在以往研究中均有详细描述,本文将主要介绍区块链在智慧城市、边缘计算和人工智能领域的前沿应用研究现状。
表1
表1
代表性区块链项目
技术选型CordaQuorumLibraBlockstackFilecoinZcash控制合约Kotlin,JavaGOMoveClarity非图灵完备非图灵完备非图灵完备执行环境JVMEVMMVM源码编译源码编译源码编译处理模型链上链上/链下(私有数据)链上链下(虚拟链)链下(IPFS)链上奖惩机制——Libra coinsStacks tokenFilecoinZcash/Turnstiles共识算法Notary 机制/RAFT,BFT-SMaRtQuorum-Chain,RAFTLibraBFTTunable Proofs,proof-of-burnPoRep,PoETPoW信息模型UTXO基于账户基于账户基于账户基于账户UTXO关联验证结构散列算法MKT散列算法MPT散列算法MKT散列算法Merklized Adaptive Radix Forest (MARF)散列算法MKT散列算法MKT加密机制Tear-offs机制、混合密钥基于EnclaveSHA3-256/EdDSA基于Gaia/Blockstack AuthSECP256K1/BLSzk-SNARK组网方式混合型结构化混合型无结构结构化/无结构无结构通信机制AMQP1.0/单点传播Wire/GossipNoise-ProtocolFramework/GossipAtlas/GossipLibp2p/GossipBitcoin-Core/Gossip安全机制Corda加密套件/TLS证书/HTTPSDiffie-HellmanSecure BackboneTLSTor区块链类型许可链许可链许可链非许可链非许可链非许可链特点只允许对实际参与给定交易的各方进行信息访问和验证功能基于以太坊网络提供公共交易和私有交易2种交互渠道稳定、快速的交易网络剔除中心服务商的、可扩展的分布式数据存储设施,旨在保护隐私数据激励机制驱动的存储资源共享生态基于比特币网络提供零知识证明的隐私保护应用场景金融业务平台分布式应用加密货币互联网基础设施文件存储与共享加密货币
新窗口打开|
下载CSV
5.1 智慧城市
智慧城市是指利用 ICT 优化公共资源利用效果、提高居民生活质量、丰富设施信息化能力的研究领域,该领域包括个人信息管理、智慧医疗、智慧交通、供应链管理等具体场景。智慧城市强调居民、设施等各类数据的采集、分析与使能,数据可靠性、管理透明化、共享可激励等需求为智慧城市带来了许多技术挑战。区块链去中心化的交互方式避免了单点故障、提升管理公平性,公开透明的账本保证数据可靠及可追溯性,多种匿名机制利于居民隐私的保护,因此区块链有利于问题的解决。Hashemi等[62]将区块链用于权限数据存储,构建去中心化的个人数据接入控制模型;Bao等[63]利用区块链高效认证和管理用户标识,保护车主的身份、位置、车辆信息等个人数据。
5.2 边缘计算
边缘计算是一种将计算、存储、网络资源从云平台迁移到网络边缘的分布式信息服务架构,试图将传统移动通信网、互联网和物联网等业务进行深度融合,减少业务交付的端到端时延,提升用户体验。安全问题是边缘计算面临的一大技术挑战,一方面,边缘计算的层次结构中利用大量异构终端设备提供用户服务,这些设备可能产生恶意行为;另一方面,服务迁移过程中的数据完整性和真实性需要得到保障。区块链在这种复杂的工作环境和开放的服务架构中能起到较大作用。首先,区块链能够在边缘计算底层松散的设备网络中构建不可篡改的账本,提供设备身份和服务数据验证的依据。其次,设备能在智能合约的帮助下实现高度自治,为边缘计算提供设备可信互操作基础。Samaniego等[64]提出了一种基于区块链的虚拟物联网资源迁移架构,通过区块链共享资源数据从而保障安全性。Stanciu[65]结合软件定义网络(SDN)、雾计算和区块链技术提出分布式安全云架构,解决雾节点中SDN控制器流表策略的安全分发问题。Ziegler等[66]基于 Plasma 框架提出雾计算场景下的区块链可扩展应用方案,提升雾计算网关的安全性。
5.3 人工智能
人工智能是一类智能代理的研究,使机器感知环境/信息,然后进行正确的行为决策,正确是指达成人类预定的某些目标。人工智能的关键在于算法,而大部分机器学习和深度学习算法建立于体积庞大的数据集和中心化的训练模型之上,该方式易受攻击或恶意操作使数据遭到篡改,其后果为模型的不可信与算力的浪费。此外,数据采集过程中无法确保下游设备的安全性,无法保证数据来源的真实性与完整性,其后果将在自动驾驶等场景中被放大。区块链不可篡改的特性可以实现感知和训练过程的可信。另外,去中心化和合约自治特性为人工智能训练工作的分解和下放奠定了基础,保障安全的基础上提高计算效率。Kim等[67]利用区块链验证联合学习框架下的分发模型的完整性,并根据计算成本提供相应的激励,优化整体学习效果。Bravo-Marquez 等[68]提出共识机制“学习证明”以减轻PoX类共识的计算浪费,构建公共可验证的学习模型和实验数据库。
6 技术挑战与研究展望
6.1 层次优化与深度融合
区块链存在“三元悖论”——安全性、扩展性和去中心化三者不可兼得,只能依靠牺牲一方的效果来满足另外两方的需求。以比特币为代表的公链具有较高的安全性和完全去中心化的特点,但是资源浪费等问题成为拓展性优化的瓶颈。尽管先后出现了PoS、BFT等共识协议优化方案,或侧链、分片等链上处理模型,或Plasma、闪电网络等链下扩展方案,皆是以部分安全性或去中心化为代价的。因此,如何将区块链更好地推向实际应用很大程度取决于三元悖论的解决,其中主要有2种思路。
1) 层次优化
区块链层次化结构中每层都不同程度地影响上述3种特性,例如网络时延、并行读写效率、共识速度和效果、链上/链下模型交互机制的安全性等,对区块链的优化应当从整体考虑,而不是单一层次。
网络层主要缺陷在于安全性,可拓展性则有待优化。如何防御以 BGP 劫持为代表的网络攻击将成为区块链底层网络的安全研究方向[19]。信息中心网络将重塑区块链基础传输网络,通过请求聚合和数据缓存减少网内冗余流量并加速通信传输[69]。相比于数据层和共识层,区块链网络的关注度较低,但却是影响安全性、可拓展性的基本因素。
数据层的优化空间在于高效性,主要为设计新的数据验证结构与算法。该方向可以借鉴计算机研究领域的多种数据结构理论与复杂度优化方法,寻找适合区块链计算方式的结构,甚至设计新的数据关联结构。实际上相当一部分项目借鉴链式结构的思想开辟新的道路,例如压缩区块空间的隔离见证、有向无环图(DAG)中并行关联的纠缠结构(Tangle),或者Libra项目采用的状态树。
共识机制是目前研究的热点,也是同时影响三元特性的最难均衡的层次。PoW牺牲可拓展性获得完全去中心化和安全性,PoS高效的出块方式具备可扩展性但产生了分叉问题,POA结合两者做到了3种特性的均衡。以此为切入的Hybrid类共识配合奖惩机制的机动调节取得了较好效果,成为共识研究的过渡手段,但是如何做到三元悖论的真正突破还有待研究。
控制层面是目前可扩展性研究的热点,其优势在于不需要改变底层的基础实现,能够在短期内应用,集中在产业界的区块链项目中。侧链具有较好的灵活性但操作复杂度高,分片改进了账本结构但跨分片交互的安全问题始终存在,而链下处理模型在安全方面缺少理论分析的支撑。因此,三元悖论的解决在控制层面具有广泛的研究前景。
2) 深度融合
如果将层次优化称为横向优化,那么深度融合即为根据场景需求而进行的纵向优化。一方面,不同场景的三元需求并不相同,例如接入控制不要求完全去中心化,可扩展性也未遇到瓶颈,因此可采用BFT类算法在小范围构建联盟链。另一方面,区块链应用研究从简单的数据上链转变为链下存储、链上验证,共识算法从 PoW 转变为场景结合的服务证明和学习证明,此外,结合 5G 和边缘计算可将网络和计算功能移至网络边缘,节约终端资源。这意味着在严格的场景建模下,区块链的层次技术选型将与场景特点交叉创新、深度融合,具有较为广阔的研究前景。
6.2 隐私保护
加密货币以匿名性著称,但是区块链以非对称加密为基础的匿名体系不断受到挑战。反匿名攻击从身份的解密转变为行为的聚类分析,不仅包括网络流量的IP聚类,还包括交易数据的地址聚类、交易行为的启发式模型学习,因此大数据分析技术的发展使区块链隐私保护思路发生转变。已有Tor网络、混币技术、零知识证明、同态加密以及各类复杂度更高的非对称加密算法被提出,但是各方法仍有局限,未来将需要更为高效的方法。此外,随着区块链系统的可编程化发展,内部复杂性将越来越高,特别是智能合约需要更严格、有效的代码检测方法,例如匿名性检测、隐私威胁预警等。
6.3 工业区块链
工业区块链是指利用区块链夯实工业互联网中数据的流通和管控基础、促进价值转换的应用场景,具有较大的研究前景。
工业互联网是面向制造业数字化、网络化、智能化需求,构建基于海量数据采集、汇聚、分析的服务体系,支撑制造资源泛在连接、弹性供给、高效配置的重要基础设施。“工业互联网平台”是工业互联网的核心,通过全面感知、实时分析、科学决策、精准执行的逻辑闭环,实现工业全要素、全产业链、全价值链的全面贯通,培育新的模式和业态。
可以看到,工业互联网与物联网、智慧城市、消费互联网等场景应用存在内在关联,例如泛在连接、数据共享和分析、电子商务等,那么其学术问题与技术实现必然存在关联性。区块链解决了物联网中心管控架构的单点故障问题,克服泛在感知设备数据的安全性和隐私性挑战,为智慧城市场景的数据共享、接入控制等问题提供解决方法,为激励资源共享构建了新型互联网价值生态。尽管工业互联网作为新型的产业生态系统,其技术体系更复杂、内涵更丰富,但是不难想象,区块链同样有利于工业互联网的发展。
“平台+区块链”能够通过分布式数据管理模式,降低数据存储、处理、使用的管理成本,为工业用户在工业 APP 选择和使用方面搭建起更加可信的环境,实现身份认证及操作行为追溯、数据安全存储与可靠传递。能够通过产品设计参数、质量检测结果、订单信息等数据“上链”,实现有效的供应链全要素追溯与协同服务。能够促进平台间数据交易与业务协同,实现跨平台交易结算,带动平台间的数据共享与知识复用,促进工业互联网平台间互联互通。
当然,工业是关乎国计民生的产业,将区块链去中心化、匿名化等特性直接用于工业互联网是不可取的,因此需要研究工业区块链管理框架,实现区块链的可管可控,在一定范围内发挥其安全优势,并对工业互联网的运转提供正向激励。
7 结束语
区块链基于多类技术研究的成果,以低成本解决了多组织参与的复杂生产环境中的信任构建和隐私保护等问题,在金融、教育、娱乐、版权保护等场景得到了较多应用,成为学术界的研究热点。比特币的出现重塑了人们对价值的定义,伴随着产业界的呼声,区块链技术得到了快速发展,而遵循区块链层次化分析方法,能够直观地区别各项目的技术路线和特点,为优化区块链技术提供不同观察视角,并为场景应用的深度融合创造条件,促进后续研究。未来的发展中,区块链将成为更为基础的信任支撑技术,在产业互联网等更广阔的领域健康、有序地发展。
The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。
参考文献
View Option
原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[1]
袁勇, 王飞跃 . 区块链技术发展现状与展望[J]. 自动化学报, 2016,42(4): 481-494.
[本文引用: 1]
YUAN Y , WANG F Y . Blockchain:the state of the art and future trends[J]. Acta Automatica Sinica, 2016,42(4): 481-494.
[本文引用: 1]
[2]
邵奇峰, 张召, 朱燕超 ,等. 企业级区块链技术综述[J]. 软件学报, 2019,30(9): 2571-2592.
[本文引用: 1]
SHAO Q F , ZHANG Z , ZHU Y C ,et al. Survey of enterprise blockchains[J]. 2019,30(9): 2571-2592.
[本文引用: 1]
[3]
YANG W , AGHASIAN E , GARG S ,et al. A survey on blockchain-based internet service architecture:requirements,challenges,trends,and future[J]. IEEE Access, 2019,7: 75845-75872.
[本文引用: 1]
[4]
韩璇, 袁勇, 王飞跃 . 区块链安全问题:研究现状与展望[J]. 自动化学报, 2019,45(1): 208-227.
[本文引用: 1]
HAN X , YUAN Y , WANG F Y . Security problems on blockchain:the state of the art and future trends[J]. Acta Automatica Sinica, 2016,45(1): 208-227.
[本文引用: 1]
[5]
ALI M , VECCHIO M , PINCHEIRA M ,et al. Applications of blockchains in the Internet of things:a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2019,21: 1676-1717.
[本文引用: 1]
[6]
CHAUM D . Blind signature system[M]. Advances in Cryptology: Proceedings of Crypto 83.Springer USPress, 1984.
[本文引用: 1]
[7]
LAW L , SABEET S , SOLINAS J . How to make a mint:the cryptography of anonymous electronic cash[J]. The American University Law Review, 1997,46: 1131-1162.
[本文引用: 1]
[8]
JAKOBSSON M , JUELS A . Proofs of work and bread pudding protocols[C]// IFIP TC6/TC11 Joint Working Conference on Communications and Multimedia Security. IFIP, 1999: 258-272.
[本文引用: 1]
[9]
王学龙, 张璟 . P2P 关键技术研究综述[J]. 计算机应用研究, 2010,27(3): 801-805.
[本文引用: 1]
WANG X L , ZHANG J . Survey on peer-to-peer key technologies[J]. Application Research of Computers, 2010,27(3): 801-805.
[本文引用: 1]
[10]
DEMERS A , GREENE D , HOUSER C ,et al. Epidemic algorithms for replicated database maintenance[J]. ACM SIGOPS Operating Systems Review, 1988,22: 8-32.
[本文引用: 1]
[11]
DECKER C , WATTENHOFER R . Information propagation in the bitcoin network[C]// IEEE Thirteenth International Conference on Peer-to-peer Computing. IEEE, 2013: 1-10.
[本文引用: 1]
[12]
FADHIL M , OWENSON G , ADDA M . Locality based approach to improve propagation delay on the bitcoin peer-to-peer network[C]// 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). IEEE, 2017: 556-559.
[本文引用: 1]
[13]
KANEKO Y , ASAKA T . DHT clustering for load balancing considering blockchain data size[C]// 2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW). IEEE Computer Society, 2018: 71-74.
[本文引用: 1]
[14]
KOSHY P , KOSHY D , MCDANIEL P . An analysis of anonymity in bitcoin using P2P network traffic[C]// Financial Cryptography and Data Security:18th International Conference. Springer, 2014: 469-485.
[15]
BIRYUKOV A , KHOVRATOVICH D , PUSTOGAROV I . Deanonymisation of clients in bitcoin P2P network[C]// ACM SIGSAC Conference on Computer and Communications Security. ACM, 2014: 15-29.
[16]
VENKATAKRISHNAN S B , FANTI G , VISWANATH P . Dandelion:redesigning the bitcoin network for anonymity[C]// The 2017 ACM SIGMETRICS. ACM, 2017:57.
[本文引用: 1]
[17]
FANTI G , VENKATAKRISHNAN S B , BAKSHI S ,et al. Dandelion++:lightweight cryptocurrency networking with formal anonymity guarantees[J]. ACM SIGMETRICS Performance Evaluation Review, 2018,46: 5-7.
[本文引用: 1]
[18]
HEILMAN E , KENDLER A , ZOHAR A ,et al. Eclipse attacks on Bitcoin’s peer-to-peer network[C]// USENIX Conference on Security Symposium. USENIX Association, 2015: 129-144.
[本文引用: 1]
[19]
APOSTOLAKI M , ZOHAR A , VANBEVER L . Hijacking bitcoin:routing attacks on cryptocurrencies[C]// 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017: 375-392.
[本文引用: 2]
[20]
REYZIN L , IVANOV S . Improving authenticated dynamic dictionaries,with applications to cryptocurrencies[C]// International Conference on Financial Cryptography & Data Security. Springer, 2017: 376-392.
[本文引用: 1]
[21]
ZHANG C , XU C , XU J L ,et al. GEM^2-tree:a gas-efficient structure for authenticated range queries in blockchain[C]// IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 2019: 842-853.
[本文引用: 1]
[22]
REID F , HARRIGAN M . An analysis of anonymity in the bitcoin system[C]// 2011 IEEE Third International Conference on Privacy,Security,Risk and Trust. IEEE, 2011: 1318-1326.
[本文引用: 1]
[23]
MEIKLEJOHN S , POMAROLE M , JORDAN G ,et al. A fistful of bitcoins:characterizing payments among men with no names[C]// The 2013 Conference on Internet Measurement Conference. ACM, 2013: 127-140.
[本文引用: 1]
[24]
AWAN M K , CORTESI A . Blockchain transaction analysis using dominant sets[C]// IFIP International Conference on Computer Information Systems and Industrial Management. IFIP, 2017: 229-239.
[本文引用: 1]
[25]
SAXENA A , MISRA J , DHAR A . Increasing anonymity in bitcoin[C]// International Conference on Financial Cryptography and Data Security. Springer, 2014: 122-139.
[本文引用: 1]
[26]
MIERS I , GARMAN C , GREEN M ,et al. Zerocoin:anonymous distributed e-cash from bitcoin[C]// 2013 IEEE Symposium on Security and Privacy. IEEE, 2013: 397-411.
[本文引用: 1]
[27]
SASSON E B , CHIESA A , GARMAN C ,et al. Zerocash:decentralized anonymous payments from bitcoin[C]// 2014 IEEE Symposium on Security and Privacy (SP). IEEE, 2014: 459-474.
[本文引用: 1]
[28]
YIN W , WEN Q , LI W ,et al. A anti-quantum transaction authentication approach in blockchain[J]. IEEE Access, 2018,6: 5393-5401.
[本文引用: 1]
[29]
DOUCEUR J R , . The sybil attack[C]// The First International Workshop on Peer-to-Peer Systems(IPTPS’ 01). Springer, 2002: 251-260.
[本文引用: 1]
[30]
KARAME G O , ANDROULAKI E , CAPKUN S . Double-spending fast payments in bitcoin[C]// The 2012 ACM conference on Computer and communications security. ACM, 2012: 906-917.
[本文引用: 1]
[31]
LAMPORT L , SHOSTAK R , PEASE M . The byzantine generals problem[J]. ACM Transactions on Programming Languages and Systems, 1982,4: 382-401.
[本文引用: 1]
[32]
BANO S , SONNINO A , AL-BASSAM M ,et al. Consensus in the age of blockchains[J]..03936,2017. arXiv Preprint,arXiv:1711.03936,2017.
[本文引用: 1]
[33]
DWORK C , LYNCH N , STOCKMEYER L . Consensus in the presence of partial synchrony[J]. Journal of the ACM, 1988,35: 288-323.
[本文引用: 2]
[34]
TSCHORSCH F , SCHEUERMANN B . Bitcoin and beyond:a technical survey on decentralized digital currencies[J]. IEEE Communications Surveys & Tutorials, 2016,18: 2084-2123.
[本文引用: 1]
[35]
CACHIN C VUKOLIĆ M . Blockchains consensus protocols in the wild[J]. arXiv Preprint,arXiv:1707.01873, 2017.
[本文引用: 1]
[36]
CASTRO M , LISKOV B . Practical byzantine fault tolerance and proactive recovery[J]. ACM Transactions on Computer Systems, 2002,20: 398-461.
[本文引用: 1]
[37]
ONGARO D , OUSTERHOUT J . In search of an understandable consensus algorithm[C]// The 2014 USENIX Conference on USENIX Annual Technical Conference. USENIX Association, 2015: 305-320.
[本文引用: 1]
[38]
BALL M , ROSEN A , SABIN M ,et al. Proofs of useful work[R]. Cryptology ePrint Archive:Report 2017/203.
[本文引用: 1]
[39]
MIHALJEVIC B , ZAGAR M . Comparative analysis of blockchain consensus algorithms[C]// International Convention on Information and Communication Technology,Electronics and Microelectronics (MIPRO). IEEE, 2018: 1545-1550.
[本文引用: 1]
[40]
KIAYIAS A , RUSSELL A , DAVID B ,et al. Ouroboros:a provably secure proof-of-stake blockchain protocol[C]// Advances in Cryptology - CRYPTO 2017. Springer, 2017: 357-388.
[本文引用: 1]
[41]
FISCH B . Tight proofs of space and replication[J].,ePrint-2018-702. IACR Cryptology ePrint Archive,ePrint-2018-702.
[本文引用: 1]
[42]
BELOTTI M , BOŽIĆ N , PUJOLLE G ,et al. A vademecum on blockchain technologies:when,which,and how[J]. IEEE Communications Surveys & Tutorials, 2019,21: 3796-3838.
[本文引用: 1]
[43]
WANG W B , HOANG D T , HU P Z ,et al. A survey on consensus mechanisms and mining strategy management in blockchain networks[J]. IEEE Access, 2019,7: 22328-22370.
[本文引用: 1]
[44]
YOO J H , JUNG Y L , SHIN D H ,et al. Formal modeling and verification of a federated byzantine agreement algorithm for blockchain platforms[C]// IEEE International Workshop on Blockchain Oriented Software Engineering. 2019: 11-21.
[本文引用: 1]
[45]
ZHENG Z B , XIE S , DAI H ,et al. An overview of blockchain technology:architecture,consensus,and future trends[C]// 6th IEEE International Congress on Big Data. IEEE, 2017: 557-564.
[本文引用: 1]
[46]
YIN M , MALKHI D , REITER M K ,et al. HotStuff:BFT consensus in the lens of blockchain[C]// ACM Symposium on Principles of Distributed Computing. ACM, 2019: 347-356.
[本文引用: 1]
[47]
ALI S , WANG G , WHITE B ,et al. Libra critique towards global decentralized financial system[C]// Communications in Computer and Information Science. Springer, 2019: 661-672.
[本文引用: 1]
[48]
BENTOV I , LEE C , MIZRAHI A ,et al. Proof of activity:extending bitcoin’s proof of work via proof of stake[J]. IACR Cryptology ePrint Archive,ePrint-2014-25478.
[本文引用: 1]
[49]
DECKER C , SEIDEL J , WATTENHOFER R . Bitcoin meets strong consistency[J].,2014. arXiv Preprint,arXiv:1412.7935,2014.
[本文引用: 1]
[50]
KOKORIS-KOGIAS E , JOVANOVIC P , GAILLY N ,et al. Enhancing bitcoin security and performance with strong consistency via collective signing[J]. Applied Mathematical Modelling, 2016,37: 5723-5742.
[本文引用: 1]
[51]
BUTERIN V , GRIFFITH V . Casper the friendly finality gadget[J]. arXiv Preprint,arXiv:1710.09437,2017.
[本文引用: 1]
[52]
TSCHORSCH F , SCHEUERMANN B . Bitcoin and beyond:a technical survey on decentralized digital currencies[J]. IEEE Communications Surveys & Tutorials, 2016,18: 2084-2023,2017.
[本文引用: 1]
[53]
KIAYIAS A , MILLER A , ZINDROS D . Non-interactive proofs of proof-of-work[J]. IACR Cryptology ePrint Archive,ePrint-2017-963.
[本文引用: 1]
[54]
LUU L , NARAYANAN V , ZHENG C ,et al. A secure sharding protocol for open blockchains[C]// The 2016 ACM SIGSAC Conference on Computer and Communications Security(CCS’16). ACM, 2016: 17-30.
[本文引用: 1]
[55]
KOKORIS-KOGIAS E , JOVANOVIC P , GASSER L ,et al. OmniLedger:a secure,scale-out,decentralized ledger via sharding[C]// IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, 2018: 583-598.
[本文引用: 1]
[56]
LI S , YU M , AVESTIMEHR S ,et al. PolyShard:coded sharding achieves linearly scaling efficiency and security simultaneously[J]. arXiv Preprint,arXiv:1809.10361,2018.
[本文引用: 1]
[57]
XIE J F , YU F R , HUANG T ,et al. A survey on the scalability of blockchain systems[J]. IEEE Network, 2019,33: 166-173.
[本文引用: 1]
[58]
BURCHERT C , DECKER C , WATTENHOFER R . Scalable funding of bitcoin micropayment channel networks[C]// Stabilization,Safety,and Security of Distributed Systems. Springer, 2017: 361-377.
[本文引用: 1]
[59]
LUU L , CHU D , OLICKEL H ,et al. Making smart contracts smarter[C]// The 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016: 254-269.
[本文引用: 1]
[60]
BRENT L , JURISEVIC A , KONG M ,et al. Vandal:a scalable security analysis framework for smart contracts[J]. arXiv Preprint,arXiv:1809.039812018.
[本文引用: 1]
[61]
JIANG B , LIU Y , CHAN W K . ContractFuzzer:fuzzing smart contracts for vulnerability detection[J]. arXiv Preprint,arXiv:1807.03932,2018.
[本文引用: 1]
[62]
HASHEMI S H , FAGHRI F , CAMPBELL R H . Decentralized user-centric access control using pubsub over blockchain[J]. arXiv Preprint,arXiv:1710.00110,2017.
[本文引用: 1]
[63]
BAO S.CAO Y , LEI A ,et al. Pseudonym management through blockchain:cost-efficient privacy preservation on intelligent transportation systems[J]. IEEE Access, 2019,7: 80390-80403.
[本文引用: 1]
[64]
SAMANIEGO M , DETERS R . Hosting virtual IoT resources on edge-hosts with blockchain[C]// IEEE International Conference on Computer & Information Technology. IEEE, 2016: 116-119.
[本文引用: 1]
[65]
STANCIU A , . Blockchain based distributed control system for edge computing[C]// International Conference on Control Systems &Computer Science. IEEE, 2017: 667-671.
[本文引用: 1]
[66]
ZIEGLER M H , GROMANN M , KRIEGER U R . Integration of fog computing and blockchain technology using the plasma framework[C]// 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE, 2019: 120-123.
[本文引用: 1]
[67]
KIM H , PARK J , BENNIS M ,et al. Blockchained on-device federated learning[J]. arXiv Preprint,arXiv:1808.03949, 2018.
[本文引用: 1]
[68]
BRAVO-MARQUEZ F , REEVES S , UGARTE M . Proof-of- learning:a blockchain consensus mechanism based on machine learning competitions[C]// 2019 IEEE International Conference on Decentralized Applications and Infrastructures. IEEE, 2019: 119-124.
[本文引用: 1]
[69]
刘江, 霍如, 李诚成 ,等. 基于命名数据网络的区块链信息传输机制[J]. 通信学报, 2018,39(1), 24-33.
[本文引用: 1]
LIU J , HUO R , LI C C ,et al. Information transmission mechanism of Blockchain technology based on named-data networking[J]. Journal on Communications, 2018,39(1): 24-33.
[本文引用: 1]
区块链技术发展现状与展望
1
2016
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
区块链技术发展现状与展望
1
2016
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
企业级区块链技术综述
1
2019
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
企业级区块链技术综述
1
2019
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
A survey on blockchain-based internet service architecture:requirements,challenges,trends,and future
1
2019
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
区块链安全问题:研究现状与展望
1
2016
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
区块链安全问题:研究现状与展望
1
2016
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
Applications of blockchains in the Internet of things:a comprehensive survey
1
2019
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
Blind signature system
1
1984
... 加密货币的概念起源于一种基于盲签名(blind signature)的匿名交易技术[6],最早的加密货币交易模型“electronic cash”[7]如图1所示. ...
How to make a mint:the cryptography of anonymous electronic cash
1
1997
... 加密货币的概念起源于一种基于盲签名(blind signature)的匿名交易技术[6],最早的加密货币交易模型“electronic cash”[7]如图1所示. ...
Proofs of work and bread pudding protocols
1
1999
... 最早的加密货币构想将银行作为构建信任的基础,呈现中心化特点.此后,加密货币朝着去中心化方向发展,并试图用工作量证明(PoW,poof of work)[8]或其改进方法定义价值.比特币在此基础上,采用新型分布式账本技术保证被所有节点维护的数据不可篡改,从而成功构建信任基础,成为真正意义上的去中心化加密货币.区块链从去中心化加密货币发展而来,随着区块链的进一步发展,去中心化加密货币已经成为区块链的主要应用之一. ...
P2P 关键技术研究综述
1
2010
... 对等网络的体系架构可分为无结构对等网络、结构化对等网络和混合式对等网络[9],根据节点的逻辑拓扑关系,区块链网络的组网结构也可以划分为上述3种,如图3所示. ...
P2P 关键技术研究综述
1
2010
... 对等网络的体系架构可分为无结构对等网络、结构化对等网络和混合式对等网络[9],根据节点的逻辑拓扑关系,区块链网络的组网结构也可以划分为上述3种,如图3所示. ...
Epidemic algorithms for replicated database maintenance
1
1988
... 传播层实现对等节点间数据的基本传输,包括2 种数据传播方式:单点传播和多点传播.单点传播是指数据在2个已知节点间直接进行传输而不经过其他节点转发的传播方式;多点传播是指接收数据的节点通过广播向邻近节点进行数据转发的传播方式,区块链网络普遍基于Gossip协议[10]实现洪泛传播.连接层用于获取节点信息,监测和改变节点间连通状态,确保节点间链路的可用性(availability).具体而言,连接层协议帮助新加入节点获取路由表数据,通过定时心跳监测为节点保持稳定连接,在邻居节点失效等情况下为节点关闭连接等.交互逻辑层是区块链网络的核心,从主要流程上看,该层协议承载对等节点间账本数据的同步、交易和区块数据的传输、数据校验结果的反馈等信息交互逻辑,除此之外,还为节点选举、共识算法实施等复杂操作和扩展应用提供消息通路. ...
Information propagation in the bitcoin network
1
2013
... 随着近年来区块链网络的爆炸式发展以及开源特点,学术界开始关注大型公有链项目的网络状况,监测并研究它们的特点,研究对象主要为比特币网络.Decker等[11]设计和实现测量工具,分析传播时延数据、协议数据和地址数据,建模分析影响比特币网络性能的网络层因素,基于此提出各自的优化方法.Fadhil等[12]提出基于事件仿真的比特币网络仿真模型,利用真实测量数据验证模型的有效性,最后提出优化机制 BCBSN,旨在设立超级节点降低网络波动.Kaneko 等[13]将区块链节点分为共识节点和验证节点,其中共识节点采用无结构组网方式,验证节点采用结构化组网方式,利用不同组网方式的优点实现网络负载的均衡. ...
Locality based approach to improve propagation delay on the bitcoin peer-to-peer network
1
2017
... 随着近年来区块链网络的爆炸式发展以及开源特点,学术界开始关注大型公有链项目的网络状况,监测并研究它们的特点,研究对象主要为比特币网络.Decker等[11]设计和实现测量工具,分析传播时延数据、协议数据和地址数据,建模分析影响比特币网络性能的网络层因素,基于此提出各自的优化方法.Fadhil等[12]提出基于事件仿真的比特币网络仿真模型,利用真实测量数据验证模型的有效性,最后提出优化机制 BCBSN,旨在设立超级节点降低网络波动.Kaneko 等[13]将区块链节点分为共识节点和验证节点,其中共识节点采用无结构组网方式,验证节点采用结构化组网方式,利用不同组网方式的优点实现网络负载的均衡. ...
DHT clustering for load balancing considering blockchain data size
1
2018
... 随着近年来区块链网络的爆炸式发展以及开源特点,学术界开始关注大型公有链项目的网络状况,监测并研究它们的特点,研究对象主要为比特币网络.Decker等[11]设计和实现测量工具,分析传播时延数据、协议数据和地址数据,建模分析影响比特币网络性能的网络层因素,基于此提出各自的优化方法.Fadhil等[12]提出基于事件仿真的比特币网络仿真模型,利用真实测量数据验证模型的有效性,最后提出优化机制 BCBSN,旨在设立超级节点降低网络波动.Kaneko 等[13]将区块链节点分为共识节点和验证节点,其中共识节点采用无结构组网方式,验证节点采用结构化组网方式,利用不同组网方式的优点实现网络负载的均衡. ...
An analysis of anonymity in bitcoin using P2P network traffic
2014
Deanonymisation of clients in bitcoin P2P network
2014
Dandelion:redesigning the bitcoin network for anonymity
1
2017
... 匿名性是加密货币的重要特性之一,但从网络层视角看,区块链的匿名性并不能有效保证,因为攻击者可以利用监听并追踪 IP 地址的方式推测出交易之间、交易与公钥地址之间的关系,通过匿名隐私研究可以主动发掘安全隐患,规避潜在危害.Koshy 等[16,17]从网络拓扑、传播层协议和作恶模型3个方面对比特币网络进行建模,通过理论分析和仿真实验证明了比特币网络协议在树形组网结构下仅具备弱匿名性,在此基础上提出 Dandelion 网络策略以较低的网络开销优化匿名性,随后又提出 Dandelion++原理,以最优信息理论保证来抵抗大规模去匿名攻击. ...
Dandelion++:lightweight cryptocurrency networking with formal anonymity guarantees
1
2018
... 匿名性是加密货币的重要特性之一,但从网络层视角看,区块链的匿名性并不能有效保证,因为攻击者可以利用监听并追踪 IP 地址的方式推测出交易之间、交易与公钥地址之间的关系,通过匿名隐私研究可以主动发掘安全隐患,规避潜在危害.Koshy 等[16,17]从网络拓扑、传播层协议和作恶模型3个方面对比特币网络进行建模,通过理论分析和仿真实验证明了比特币网络协议在树形组网结构下仅具备弱匿名性,在此基础上提出 Dandelion 网络策略以较低的网络开销优化匿名性,随后又提出 Dandelion++原理,以最优信息理论保证来抵抗大规模去匿名攻击. ...
Eclipse attacks on Bitcoin’s peer-to-peer network
1
2015
... 区块链重点关注其数据层和共识层面机制,并基于普通网络构建开放的互联环境,该方式极易遭受攻击.为提高区块链网络的安全性,学术界展开研究并给出了相应的解决方案.Heilman 等[18]对比特币和以太坊网络实施日蚀攻击(eclipse attack)——通过屏蔽正确节点从而完全控制特定节点的信息来源,证实了该攻击的可行性.Apostolaki等[19]提出针对比特币网络的 BGP(border gateway protocal)劫持攻击,通过操纵自治域间路由或拦截域间流量来制造节点通信阻塞,表明针对关键数据的沿路攻击可以大大降低区块传播性能. ...
Hijacking bitcoin:routing attacks on cryptocurrencies
2
2017
... 区块链重点关注其数据层和共识层面机制,并基于普通网络构建开放的互联环境,该方式极易遭受攻击.为提高区块链网络的安全性,学术界展开研究并给出了相应的解决方案.Heilman 等[18]对比特币和以太坊网络实施日蚀攻击(eclipse attack)——通过屏蔽正确节点从而完全控制特定节点的信息来源,证实了该攻击的可行性.Apostolaki等[19]提出针对比特币网络的 BGP(border gateway protocal)劫持攻击,通过操纵自治域间路由或拦截域间流量来制造节点通信阻塞,表明针对关键数据的沿路攻击可以大大降低区块传播性能. ...
... 网络层主要缺陷在于安全性,可拓展性则有待优化.如何防御以 BGP 劫持为代表的网络攻击将成为区块链底层网络的安全研究方向[19].信息中心网络将重塑区块链基础传输网络,通过请求聚合和数据缓存减少网内冗余流量并加速通信传输[69].相比于数据层和共识层,区块链网络的关注度较低,但却是影响安全性、可拓展性的基本因素. ...
Improving authenticated dynamic dictionaries,with applications to cryptocurrencies
1
2017
... 高效验证的学术问题源于验证数据结构(ADS,authenticated data structure),即利用特定数据结构快速验证数据的完整性,实际上 MKT 也是其中的一种.为了适应区块链数据的动态性(dynamical)并保持良好性能,学术界展开了研究.Reyzin等[20]基于AVL树形结构提出AVL+,并通过平衡验证路径、缺省堆栈交易集等机制,简化轻量级节点的区块头验证过程.Zhang等[21]提出GEM2-tree结构,并对其进行优化提出 GEM2כ-tree 结构,通过分解单树结构、动态调整节点计算速度、扩展数据索引等机制降低以太坊节点计算开销. ...
GEM^2-tree:a gas-efficient structure for authenticated range queries in blockchain
1
2019
... 高效验证的学术问题源于验证数据结构(ADS,authenticated data structure),即利用特定数据结构快速验证数据的完整性,实际上 MKT 也是其中的一种.为了适应区块链数据的动态性(dynamical)并保持良好性能,学术界展开了研究.Reyzin等[20]基于AVL树形结构提出AVL+,并通过平衡验证路径、缺省堆栈交易集等机制,简化轻量级节点的区块头验证过程.Zhang等[21]提出GEM2-tree结构,并对其进行优化提出 GEM2כ-tree 结构,通过分解单树结构、动态调整节点计算速度、扩展数据索引等机制降低以太坊节点计算开销. ...
An analysis of anonymity in the bitcoin system
1
2011
... 区块数据直接承载业务信息,因此区块数据的匿名关联性分析更为直接.Reid等[22]将区块数据建模为事务网络和用户网络,利用多交易数据的用户指向性分析成功降低网络复杂度.Meiklejohn等[23]利用启发式聚类方法分析交易数据的流动特性并对用户进行分组,通过与这些服务的互动来识别主要机构的比特币地址.Awan 等[24]使用优势集(dominant set)方法对区块链交易进行自动分类,从而提高分析准确率. ...
A fistful of bitcoins:characterizing payments among men with no names
1
2013
... 区块数据直接承载业务信息,因此区块数据的匿名关联性分析更为直接.Reid等[22]将区块数据建模为事务网络和用户网络,利用多交易数据的用户指向性分析成功降低网络复杂度.Meiklejohn等[23]利用启发式聚类方法分析交易数据的流动特性并对用户进行分组,通过与这些服务的互动来识别主要机构的比特币地址.Awan 等[24]使用优势集(dominant set)方法对区块链交易进行自动分类,从而提高分析准确率. ...
Blockchain transaction analysis using dominant sets
1
2017
... 区块数据直接承载业务信息,因此区块数据的匿名关联性分析更为直接.Reid等[22]将区块数据建模为事务网络和用户网络,利用多交易数据的用户指向性分析成功降低网络复杂度.Meiklejohn等[23]利用启发式聚类方法分析交易数据的流动特性并对用户进行分组,通过与这些服务的互动来识别主要机构的比特币地址.Awan 等[24]使用优势集(dominant set)方法对区块链交易进行自动分类,从而提高分析准确率. ...
Increasing anonymity in bitcoin
1
2014
... 隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私.Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性.非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成. ...
Zerocoin:anonymous distributed e-cash from bitcoin
1
2013
... 隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私.Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性.非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成. ...
Zerocash:decentralized anonymous payments from bitcoin
1
2014
... 隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私.Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性.非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成. ...
A anti-quantum transaction authentication approach in blockchain
1
2018
... 隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私.Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性.非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成. ...
The sybil attack
1
2002
... 区块链网络中每个节点必须维护完全相同的账本数据,然而各节点产生数据的时间不同、获取数据的来源未知,存在节点故意广播错误数据的可能性,这将导致女巫攻击[29]、双花攻击[30]等安全风险;除此之外,节点故障、网络拥塞带来的数据异常也无法预测.因此,如何在不可信的环境下实现账本数据的全网统一是共识层解决的关键问题.实际上,上述错误是拜占庭将军问题(the Byzantine generals problem)[31]在区块链中的具体表现,即拜占庭错误——相互独立的组件可以做出任意或恶意的行为,并可能与其他错误组件产生协作,此类错误在可信分布式计算领域被广泛研究. ...
Double-spending fast payments in bitcoin
1
2012
... 区块链网络中每个节点必须维护完全相同的账本数据,然而各节点产生数据的时间不同、获取数据的来源未知,存在节点故意广播错误数据的可能性,这将导致女巫攻击[29]、双花攻击[30]等安全风险;除此之外,节点故障、网络拥塞带来的数据异常也无法预测.因此,如何在不可信的环境下实现账本数据的全网统一是共识层解决的关键问题.实际上,上述错误是拜占庭将军问题(the Byzantine generals problem)[31]在区块链中的具体表现,即拜占庭错误——相互独立的组件可以做出任意或恶意的行为,并可能与其他错误组件产生协作,此类错误在可信分布式计算领域被广泛研究. ...
The byzantine generals problem
1
1982
... 区块链网络中每个节点必须维护完全相同的账本数据,然而各节点产生数据的时间不同、获取数据的来源未知,存在节点故意广播错误数据的可能性,这将导致女巫攻击[29]、双花攻击[30]等安全风险;除此之外,节点故障、网络拥塞带来的数据异常也无法预测.因此,如何在不可信的环境下实现账本数据的全网统一是共识层解决的关键问题.实际上,上述错误是拜占庭将军问题(the Byzantine generals problem)[31]在区块链中的具体表现,即拜占庭错误——相互独立的组件可以做出任意或恶意的行为,并可能与其他错误组件产生协作,此类错误在可信分布式计算领域被广泛研究. ...
Consensus in the age of blockchains
1
... 状态机复制(state-machine replication)是解决分布式系统容错问题的常用理论.其基本思想为:任何计算都表示为状态机,通过接收消息来更改其状态.假设一组副本以相同的初始状态开始,并且能够就一组公共消息的顺序达成一致,那么它们可以独立进行状态的演化计算,从而正确维护各自副本之间的一致性.同样,区块链也使用状态机复制理论解决拜占庭容错问题,如果把每个节点的数据视为账本数据的副本,那么节点接收到的交易、区块即为引起副本状态变化的消息.状态机复制理论实现和维持副本的一致性主要包含2个要素:正确执行计算逻辑的确定性状态机和传播相同序列消息的共识协议.其中,共识协议是影响容错效果、吞吐量和复杂度的关键,不同安全性、可扩展性要求的系统需要的共识协议各有不同.学术界普遍根据通信模型和容错类型对共识协议进行区分[32],因此严格地说,区块链使用的共识协议需要解决的是部分同步(partial synchrony)模型[33]下的拜占庭容错问题. ...
Consensus in the presence of partial synchrony
2
1988
... 状态机复制(state-machine replication)是解决分布式系统容错问题的常用理论.其基本思想为:任何计算都表示为状态机,通过接收消息来更改其状态.假设一组副本以相同的初始状态开始,并且能够就一组公共消息的顺序达成一致,那么它们可以独立进行状态的演化计算,从而正确维护各自副本之间的一致性.同样,区块链也使用状态机复制理论解决拜占庭容错问题,如果把每个节点的数据视为账本数据的副本,那么节点接收到的交易、区块即为引起副本状态变化的消息.状态机复制理论实现和维持副本的一致性主要包含2个要素:正确执行计算逻辑的确定性状态机和传播相同序列消息的共识协议.其中,共识协议是影响容错效果、吞吐量和复杂度的关键,不同安全性、可扩展性要求的系统需要的共识协议各有不同.学术界普遍根据通信模型和容错类型对共识协议进行区分[32],因此严格地说,区块链使用的共识协议需要解决的是部分同步(partial synchrony)模型[33]下的拜占庭容错问题. ...
... 比特币在网络层采用非结构化方式组网,路由表呈现随机性.节点间则采用多点传播方式传递数据,曾基于Gossip协议实现,为提高网络的抗匿名分析能力改为基于Diffusion协议实现[33].节点利用一系列控制协议确保链路的可用性,包括版本获取(Vetsion/Verack)、地址获取(Addr/GetAddr)、心跳信息(PING/PONG)等.新节点入网时,首先向硬编码 DNS 节点(种子节点)请求初始节点列表;然后向初始节点随机请求它们路由表中的节点信息,以此生成自己的路由表;最后节点通过控制协议与这些节点建立连接,并根据信息交互的频率更新路由表中节点时间戳,从而保证路由表中的节点都是活动的.交互逻辑层为建立共识交互通道,提供了区块获取(GetBlock)、交易验证(MerkleBlock)、主链选择(CmpctBlock)等协议;轻节点只需要进行简单的区块头验证,因此通过头验证(GetHeader/Header)协议和连接层中的过滤设置协议指定需要验证的区块头即可建立简单验证通路.在安全机制方面,比特币网络可选择利用匿名通信网络Tor作为数据传输承载,通过沿路径的层层数据加密机制来保护对端身份. ...
Bitcoin and beyond:a technical survey on decentralized digital currencies
1
2016
... 区块链网络中主要包含PoX(poof of X)[34]、BFT(byzantine-fault tolerant)和 CFT(crash-fault tolerant)类基础共识协议.PoX 类协议是以 PoW (proof of work)为代表的基于奖惩机制驱动的新型共识协议,为了适应数据吞吐量、资源利用率和安全性的需求,人们又提出PoS(proof of stake)、PoST (proof of space-time)等改进协议.它们的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.BFT类协议是指解决拜占庭容错问题的传统共识协议及其改良协议,包括PBFT、BFT-SMaRt、Tendermint等.CFT类协议用于实现崩溃容错,通过身份证明等手段规避节点作恶的情况,仅考虑节点或网络的崩溃(crash)故障,主要包括Raft、Paxos、Kafka等协议. ...
Blockchains consensus protocols in the wild
1
2017
... 非许可链和许可链的开放程度和容错需求存在差异,共识层面技术在两者之间产生了较大区别.具体而言,非许可链完全开放,需要抵御严重的拜占庭风险,多采用PoX、BFT类协议并配合奖惩机制实现共识.许可链拥有准入机制,网络中节点身份可知,一定程度降低了拜占庭风险,因此可采用BFT类协议、CFT类协议构建相同的信任模型[35]. ...
Practical byzantine fault tolerance and proactive recovery
1
2002
... PBFT是 BFT经典共识协议,其主要流程如图8 所示.PBFT将节点分为主节点和副节点,其中主节点负责将交易打包成区块,副节点参与验证和转发,假设作恶节点数量为f.PBFT共识主要分为预准备、准备和接受3个阶段,主节点首先收集交易后排序并提出合法区块提案;其余节点先验证提案的合法性,然后根据区块内交易顺序依次执行并将结果摘要组播;各节点收到2f个与自身相同的摘要后便组播接受投票;当节点收到超过2f+1个投票时便存储区块及其产生的新状态[36]. ...
In search of an understandable consensus algorithm
1
2015
... Raft[37]是典型的崩溃容错共识协议,以可用性强著称.Raft将节点分为跟随节点、候选节点和领导节点,领导节点负责将交易打包成区块,追随节点响应领导节点的同步指令,候选节点完成领导节点的选举工作.当网络运行稳定时,只存在领导节点和追随节点,领导节点向追随节点推送区块数据从而实现同步.节点均设置生存时间决定角色变化周期,领导节点的心跳信息不断重置追随节点的生存时间,当领导节点发生崩溃时,追随节点自动转化为候选节点并进入选举流程,实现网络自恢复. ...
Proofs of useful work
1
2017
... 如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费.PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块.PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举.Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性.PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用. ...
Comparative analysis of blockchain consensus algorithms
1
2018
... 如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费.PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块.PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举.Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性.PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用. ...
Ouroboros:a provably secure proof-of-stake blockchain protocol
1
2017
... 如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费.PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块.PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举.Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性.PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用. ...
Tight proofs of space and replication
1
... 如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费.PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块.PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举.Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性.PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用. ...
A vademecum on blockchain technologies:when,which,and how
1
2019
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
A survey on consensus mechanisms and mining strategy management in blockchain networks
1
2019
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
Formal modeling and verification of a federated byzantine agreement algorithm for blockchain platforms
1
2019
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
An overview of blockchain technology:architecture,consensus,and future trends
1
2017
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
HotStuff:BFT consensus in the lens of blockchain
1
2019
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
Libra critique towards global decentralized financial system
1
2019
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
Proof of activity:extending bitcoin’s proof of work via proof of stake
1
... Hybrid 类协议是研究趋势之一.PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享.PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力.ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延.Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份. ...
Bitcoin meets strong consistency
1
... Hybrid 类协议是研究趋势之一.PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享.PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力.ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延.Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份. ...
Enhancing bitcoin security and performance with strong consistency via collective signing
1
2016
... Hybrid 类协议是研究趋势之一.PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享.PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力.ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延.Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份. ...
Casper the friendly finality gadget
1
... Hybrid 类协议是研究趋势之一.PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享.PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力.ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延.Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份. ...
Bitcoin and beyond:a technical survey on decentralized digital currencies
1
2016
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
Non-interactive proofs of proof-of-work
1
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
A secure sharding protocol for open blockchains
1
2016
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
OmniLedger:a secure,scale-out,decentralized ledger via sharding
1
2018
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
PolyShard:coded sharding achieves linearly scaling efficiency and security simultaneously
1
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
A survey on the scalability of blockchain systems
1
2019
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
Scalable funding of bitcoin micropayment channel networks
1
2017
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
Making smart contracts smarter
1
2016
... 一方面,沙盒环境承载了区块链节点运行条件,针对虚拟机展开的攻击更为直接;另一方面,智能合约直接对账本进行操作,其漏洞更易影响业务运行,因此控制层的安全防护研究成为热点.Luu等[59]分析了运行于EVM中的智能合约安全性,指出底层平台的分布式语义差异带来的安全问题.Brent 等[60]提出智能合约安全分析框架 Vandal,将EVM 字节码转换为语义逻辑关,为分析合约安全漏洞提供便利.Jiang 等[61]预先定义用于安全漏洞的特征,然后模拟执行大规模交易,通过分析日志中的合约行为实现漏洞检测. ...
Vandal:a scalable security analysis framework for smart contracts
1
2018
... 一方面,沙盒环境承载了区块链节点运行条件,针对虚拟机展开的攻击更为直接;另一方面,智能合约直接对账本进行操作,其漏洞更易影响业务运行,因此控制层的安全防护研究成为热点.Luu等[59]分析了运行于EVM中的智能合约安全性,指出底层平台的分布式语义差异带来的安全问题.Brent 等[60]提出智能合约安全分析框架 Vandal,将EVM 字节码转换为语义逻辑关,为分析合约安全漏洞提供便利.Jiang 等[61]预先定义用于安全漏洞的特征,然后模拟执行大规模交易,通过分析日志中的合约行为实现漏洞检测. ...
ContractFuzzer:fuzzing smart contracts for vulnerability detection
1
2018
... 一方面,沙盒环境承载了区块链节点运行条件,针对虚拟机展开的攻击更为直接;另一方面,智能合约直接对账本进行操作,其漏洞更易影响业务运行,因此控制层的安全防护研究成为热点.Luu等[59]分析了运行于EVM中的智能合约安全性,指出底层平台的分布式语义差异带来的安全问题.Brent 等[60]提出智能合约安全分析框架 Vandal,将EVM 字节码转换为语义逻辑关,为分析合约安全漏洞提供便利.Jiang 等[61]预先定义用于安全漏洞的特征,然后模拟执行大规模交易,通过分析日志中的合约行为实现漏洞检测. ...
Decentralized user-centric access control using pubsub over blockchain
1
2017
... 智慧城市是指利用 ICT 优化公共资源利用效果、提高居民生活质量、丰富设施信息化能力的研究领域,该领域包括个人信息管理、智慧医疗、智慧交通、供应链管理等具体场景.智慧城市强调居民、设施等各类数据的采集、分析与使能,数据可靠性、管理透明化、共享可激励等需求为智慧城市带来了许多技术挑战.区块链去中心化的交互方式避免了单点故障、提升管理公平性,公开透明的账本保证数据可靠及可追溯性,多种匿名机制利于居民隐私的保护,因此区块链有利于问题的解决.Hashemi等[62]将区块链用于权限数据存储,构建去中心化的个人数据接入控制模型;Bao等[63]利用区块链高效认证和管理用户标识,保护车主的身份、位置、车辆信息等个人数据. ...
Pseudonym management through blockchain:cost-efficient privacy preservation on intelligent transportation systems
1
2019
... 智慧城市是指利用 ICT 优化公共资源利用效果、提高居民生活质量、丰富设施信息化能力的研究领域,该领域包括个人信息管理、智慧医疗、智慧交通、供应链管理等具体场景.智慧城市强调居民、设施等各类数据的采集、分析与使能,数据可靠性、管理透明化、共享可激励等需求为智慧城市带来了许多技术挑战.区块链去中心化的交互方式避免了单点故障、提升管理公平性,公开透明的账本保证数据可靠及可追溯性,多种匿名机制利于居民隐私的保护,因此区块链有利于问题的解决.Hashemi等[62]将区块链用于权限数据存储,构建去中心化的个人数据接入控制模型;Bao等[63]利用区块链高效认证和管理用户标识,保护车主的身份、位置、车辆信息等个人数据. ...
Hosting virtual IoT resources on edge-hosts with blockchain
1
2016
... 边缘计算是一种将计算、存储、网络资源从云平台迁移到网络边缘的分布式信息服务架构,试图将传统移动通信网、互联网和物联网等业务进行深度融合,减少业务交付的端到端时延,提升用户体验.安全问题是边缘计算面临的一大技术挑战,一方面,边缘计算的层次结构中利用大量异构终端设备提供用户服务,这些设备可能产生恶意行为;另一方面,服务迁移过程中的数据完整性和真实性需要得到保障.区块链在这种复杂的工作环境和开放的服务架构中能起到较大作用.首先,区块链能够在边缘计算底层松散的设备网络中构建不可篡改的账本,提供设备身份和服务数据验证的依据.其次,设备能在智能合约的帮助下实现高度自治,为边缘计算提供设备可信互操作基础.Samaniego等[64]提出了一种基于区块链的虚拟物联网资源迁移架构,通过区块链共享资源数据从而保障安全性.Stanciu[65]结合软件定义网络(SDN)、雾计算和区块链技术提出分布式安全云架构,解决雾节点中SDN控制器流表策略的安全分发问题.Ziegler等[66]基于 Plasma 框架提出雾计算场景下的区块链可扩展应用方案,提升雾计算网关的安全性. ...
Blockchain based distributed control system for edge computing
1
2017
... 边缘计算是一种将计算、存储、网络资源从云平台迁移到网络边缘的分布式信息服务架构,试图将传统移动通信网、互联网和物联网等业务进行深度融合,减少业务交付的端到端时延,提升用户体验.安全问题是边缘计算面临的一大技术挑战,一方面,边缘计算的层次结构中利用大量异构终端设备提供用户服务,这些设备可能产生恶意行为;另一方面,服务迁移过程中的数据完整性和真实性需要得到保障.区块链在这种复杂的工作环境和开放的服务架构中能起到较大作用.首先,区块链能够在边缘计算底层松散的设备网络中构建不可篡改的账本,提供设备身份和服务数据验证的依据.其次,设备能在智能合约的帮助下实现高度自治,为边缘计算提供设备可信互操作基础.Samaniego等[64]提出了一种基于区块链的虚拟物联网资源迁移架构,通过区块链共享资源数据从而保障安全性.Stanciu[65]结合软件定义网络(SDN)、雾计算和区块链技术提出分布式安全云架构,解决雾节点中SDN控制器流表策略的安全分发问题.Ziegler等[66]基于 Plasma 框架提出雾计算场景下的区块链可扩展应用方案,提升雾计算网关的安全性. ...
Integration of fog computing and blockchain technology using the plasma framework
1
2019
... 边缘计算是一种将计算、存储、网络资源从云平台迁移到网络边缘的分布式信息服务架构,试图将传统移动通信网、互联网和物联网等业务进行深度融合,减少业务交付的端到端时延,提升用户体验.安全问题是边缘计算面临的一大技术挑战,一方面,边缘计算的层次结构中利用大量异构终端设备提供用户服务,这些设备可能产生恶意行为;另一方面,服务迁移过程中的数据完整性和真实性需要得到保障.区块链在这种复杂的工作环境和开放的服务架构中能起到较大作用.首先,区块链能够在边缘计算底层松散的设备网络中构建不可篡改的账本,提供设备身份和服务数据验证的依据.其次,设备能在智能合约的帮助下实现高度自治,为边缘计算提供设备可信互操作基础.Samaniego等[64]提出了一种基于区块链的虚拟物联网资源迁移架构,通过区块链共享资源数据从而保障安全性.Stanciu[65]结合软件定义网络(SDN)、雾计算和区块链技术提出分布式安全云架构,解决雾节点中SDN控制器流表策略的安全分发问题.Ziegler等[66]基于 Plasma 框架提出雾计算场景下的区块链可扩展应用方案,提升雾计算网关的安全性. ...
Blockchained on-device federated learning
1
2018
... 人工智能是一类智能代理的研究,使机器感知环境/信息,然后进行正确的行为决策,正确是指达成人类预定的某些目标.人工智能的关键在于算法,而大部分机器学习和深度学习算法建立于体积庞大的数据集和中心化的训练模型之上,该方式易受攻击或恶意操作使数据遭到篡改,其后果为模型的不可信与算力的浪费.此外,数据采集过程中无法确保下游设备的安全性,无法保证数据来源的真实性与完整性,其后果将在自动驾驶等场景中被放大.区块链不可篡改的特性可以实现感知和训练过程的可信.另外,去中心化和合约自治特性为人工智能训练工作的分解和下放奠定了基础,保障安全的基础上提高计算效率.Kim等[67]利用区块链验证联合学习框架下的分发模型的完整性,并根据计算成本提供相应的激励,优化整体学习效果.Bravo-Marquez 等[68]提出共识机制“学习证明”以减轻PoX类共识的计算浪费,构建公共可验证的学习模型和实验数据库. ...
Proof-of- learning:a blockchain consensus mechanism based on machine learning competitions
1
2019
... 人工智能是一类智能代理的研究,使机器感知环境/信息,然后进行正确的行为决策,正确是指达成人类预定的某些目标.人工智能的关键在于算法,而大部分机器学习和深度学习算法建立于体积庞大的数据集和中心化的训练模型之上,该方式易受攻击或恶意操作使数据遭到篡改,其后果为模型的不可信与算力的浪费.此外,数据采集过程中无法确保下游设备的安全性,无法保证数据来源的真实性与完整性,其后果将在自动驾驶等场景中被放大.区块链不可篡改的特性可以实现感知和训练过程的可信.另外,去中心化和合约自治特性为人工智能训练工作的分解和下放奠定了基础,保障安全的基础上提高计算效率.Kim等[67]利用区块链验证联合学习框架下的分发模型的完整性,并根据计算成本提供相应的激励,优化整体学习效果.Bravo-Marquez 等[68]提出共识机制“学习证明”以减轻PoX类共识的计算浪费,构建公共可验证的学习模型和实验数据库. ...
基于命名数据网络的区块链信息传输机制
1
2018
... 网络层主要缺陷在于安全性,可拓展性则有待优化.如何防御以 BGP 劫持为代表的网络攻击将成为区块链底层网络的安全研究方向[19].信息中心网络将重塑区块链基础传输网络,通过请求聚合和数据缓存减少网内冗余流量并加速通信传输[69].相比于数据层和共识层,区块链网络的关注度较低,但却是影响安全性、可拓展性的基本因素. ...
基于命名数据网络的区块链信息传输机制
1
2018
... 网络层主要缺陷在于安全性,可拓展性则有待优化.如何防御以 BGP 劫持为代表的网络攻击将成为区块链底层网络的安全研究方向[19].信息中心网络将重塑区块链基础传输网络,通过请求聚合和数据缓存减少网内冗余流量并加速通信传输[69].相比于数据层和共识层,区块链网络的关注度较低,但却是影响安全性、可拓展性的基本因素. ...
/
〈
〉
期刊网站版权所有 © 2021 《通信学报》编辑部
地址:北京市丰台区东铁匠营街道顺八条1号院B座“北阳晨光大厦”2层 邮编:100079
电话:010-53878169、53859522、53878236 电子邮件:xuebao@ptpress.com.cn; txxb@bjxintong.com.cn
期刊网站版权所有 © 2021 《通信学报》编辑部
地址:北京市丰台区东铁匠营街道顺八条1号院B座“北阳晨光大厦”2层
邮编:100079 电话:010-53878169、53859522、53878236
电子邮件:txxb@bjxintong.com.cn
什么是区块链?区块链本身具有哪些技术特点和应用价值? - 知乎
什么是区块链?区块链本身具有哪些技术特点和应用价值? - 知乎首页知乎知学堂发现等你来答切换模式登录/注册职场职场困惑区块链什么是区块链?区块链本身具有哪些技术特点和应用价值?关注者5被浏览9,924关注问题写回答邀请回答好问题添加评论分享4 个回答默认排序螃蟹哥炒币 关注区块链是一种近年来备受关注的技术,在金融、物流、医疗等多个领域都有广泛的应用。本文将深入探讨区块链是什么,区块链的价值和应用前景有哪些,同时也分析其局限性。我们将从技术特点、应用场景等各个方面进行细致的解析,旨在全面而深入地了解区块链技术。区块链的定义和技术特点区块链是一种分布式账本技术,它的特点在于去中心化、不可篡改、安全可靠以及可追溯。区块链技术采用了一种分布式共识机制,通过多方的验证和认可来确保数据的可信度和完整性。首先,区块链的去中心化是指没有集中的第三方机构来掌控和管理数据,所有的参与者通过对等的节点来协同维护分布式账本。这种机制使得区块链能够突破现有的中心化体系的限制,实现更加普惠的数据共享。其次,区块链的不可篡改性是指一旦数据被写入区块链,就不能被篡改或删除。因为区块链上的每条记录都会被加密、指纹、签名等多种数据安全技术所保护,同时区块链的分布式共识机制也保证了数据的一致性和准确性。另外,区块链还具有安全可靠和可追溯的特点。区块链上的所有交易记录都被记录在分布式账本上,任何人都可以随时查看数据,这可以有效提高数据的透明度和公信力。且所有交易都是基于密钥签名的,这可以保证交易的安全性和隐私性。区块链的应用场景和价值区块链技术具有广泛的应用前景,尤其在金融、物流、医疗、知识产权等领域有着潜力巨大的应用。在金融领域,区块链技术可以实现跨境汇款、融资和交易等多种功能。例如,通过区块链技术,可以实现无人值守的智能合约,自动化执行交易流程,减少人力成本和时间成本。同时,区块链技术可以有效预防金融诈骗和洗钱等金融犯罪行为,提高了金融交易的安全性。在物流领域,区块链技术可以实现物品的全程追溯。区块链技术可以记录物品的来源、生产时间、运输路线等信息,确保物品的质量和安全性。同时,区块链技术还可以提高物流效率,降低物流成本,提高物流供应链可持续性。在医疗领域,区块链技术可以实现病历的共享和医疗数据的安全存储。目前,医疗行业存在着病历信息孤岛和医疗数据难以传递的问题,使用区块链技术可以将数据共享和存储在一个无中心化且安全可靠的平台上,保证了数据的完整性和安全性,提高了医疗服务的质量和效率。在知识产权领域,区块链技术可以实现数字版权、溯源查询等多种功能。区块链技术可以将知识产权和数字版权的信息记录在分布式账本上,确保信息的安全和可追溯性,有效保护了知识产权和数字版权的权益。区块链的局限性和挑战然而,区块链技术也存在一些局限性和挑战。首先,区块链技术的普及和应用面临着一定的技术门槛和成本问题。目前区块链技术的操作和维护还需要一定的技术知识和资金投入,对于小型企业和个人而言,存在一定的门槛和挑战。其次,区块链技术的可扩展性和性能也是需要关注的问题。随着区块链应用场景的不断扩展和数据量的不断增加,区块链技术所面临的问题也愈发复杂。例如在比特币区块链网络中,存在着交易速度较慢、交易费用过高等问题。此外,区块链技术的安全性也需要更加关注和保证。尽管区块链技术具有很高的安全性和不可篡改性,但是目前已经出现了多种攻击和漏洞。因此,区块链的安全性需要逐步提高和完善。总结总之,区块链技术是一种崭新的技术,具有广泛的应用价值和前景。同时,我们也需要考虑到区块链技术所面临的局限性和挑战。在实践过程中,需要根据具体场景和需求,合理评估区块链技术的可行性和有效性,推动区块链技术的标准化和规范化,提高其稳定性和可持续性。发布于 2023-11-08 09:07赞同 2添加评论分享收藏喜欢收起中科基大数据数智转型,智慧大脑,有我,不再烦恼! 关注区块链技术是一种具有改变世界的颠覆性技术,2016年麦肯锡发布的报告中指出区块链是继蒸汽机、电力、信息和互联网之后最有可能触发颠覆性革命浪潮的核心技术”,北京航空航天大学蔡维德教授曾说过:如果银行采用区块链技术,那么每年将会节省2.2万亿美元的资金!”,这能看出区块链所蕴含的巨大潜力。大多数人对区块链的认识源自于比特币”,正是因为有区块链技术的支撑,比特币才在全世界范围内大行其道,那么到底区块链技术有哪些显著的优势呢?用一句话概括就是:用较低成本解决了陌生人之间的信任问题!具体有以下几点:一、去中心化。区块链技术可以看作是一种分布式账本”,大家人手一本,并且所有账本的内容是一样的,而记账的过程也全都是在大家共同的监管之下完成的,公开透明,所以不存在作弊”问题,因此应用区块链技术的交易过程可以大大减少人力和其他成本,举个好理解一些的例子,比如我们在某宝买了一件商品,那么我们买卖双方都要通过支付宝进行交易,假如支付宝有问题(比如卷款跑路、拿了钱不承认或者外界影响因素)那么我们的钱就损失了,但如果采用区块链技术那么我们买卖双方都生成完成了这笔交易就行了,并且不用担心任何其他问题。二、不可篡改。区块链技术决定了这种账本的内容一旦形成则不可更改,因此我们可以完全相信账本的内容,这就是区块链的可信任性”。假如有人想偷偷修改一下自己手里的账本,但是不要忘了大家人手一本,你就改你只能改你自己手里的账本,别人的是改不了的,因此你的修改就会被认为是非法和无效的,也就是说已经形成的账目,任何人都无法修改。三、安全性。区块链采用加密算法,确保未得到授权的情况下不能访问账户中的数据信息,这保证了账户中的数据信息可以长期保存。区块链技术使得交易过程无需再为信任而付出额外的成本,大大降低了交易的复杂性,所以区块链技术可以推广到所有的数字化领域,并为我们的社会带来巨大的改变。但是区块链技术同时也存在很多的缺点,不过随着技术的发展,这些缺点都将会被一 一克服,届时区块链技术将如同网络一样渗入我们生活工作的方方面面。区块链本质上是一个分布式的公共账本,将各个区块连成一个链条。我们可以将其定义为一个系统,它让一组互联的电脑安全地共同维护一份帐本,每台计算机就是一个数据库(服务器),中间无需第三方服务器。所以,区块链不是一种特定的软件,就像“数据库”这个三个字表现的意思一样,它是一种特定技术的设计思想。就像TCP/IP协议和普通人之间的关系,普通人完全不需要知道什么是互联网底层的TCP/IP协议,只要享受互联网提供的服务就行。普通人和区块链基本上没什么关系,除非是准备从事这方面的创业。比于传统的中心化方案,区块链技术主要有以下三个特征:1、区块链的核心思想是去中心化在区块链系统中,任意节点之间的权利和义务都是均等的,所有的节点都有能力去用计算能力投票,从而保证了得到承认的结果是过半数节点公认的结果。即使遭受严重的黑客攻击,只要黑客控制的节点数不超过全球节点总数的一半,系统就依然能正常运行,数据也不会被篡改。2、区块链最大的颠覆性在于信用的建立理论上说,区块链技术可以让微信支付和支付宝不再有存在价值。《经济学人》对区块链做了一个形象的比喻:简单地说,它是“一台创造信任的机器”。区块链让人们在互不信任并没有中立中央机构的情况下,能够做到互相协作。打击假币和金融诈骗未来都不需要了。3、区块链的集体维护可以降低成本在中心化网络体系下,系统的维护和经营依赖于数据中心等平台的运维和经营,成本不可省略。区块链的节点是任何人都可以参与的,每一个节点在参与记录的同时也来验证其他节点记录结果的正确性,维护效率提高,成本降低。可应用的领域:一、金融领域区块链能够提供信任机制,具备改变金融基础架构的潜力,各类金融资产如股权、债券、票据、仓单、基金份额等都可以被整合到区块链技术体系中,成为链上的数字资产,在区块链上进行存储、转移和交易。区块链技术的去中心化,能够降低交易成本,使金融交易更加便捷、直观和安全。区块链技术与金融业相结合,必然会创造出越来越多的业务模式,服务场景、业务流程和金融产品,从而给金融市场、金融机构、金融服务及金融业态发展带来更多影响。随着区块链技术的改进及区块链技术与其他金融科技的结合,区块链技术将逐步适应大规模金融场景的应用。二、公共服务领域传统的公共服务依赖于有限的数据维度,获得的信息可能不够全面且有一定的滞后性。区块链不可篡改的特性使链上的数字化证明可信度极高,在产权、公证及公益等领域都可以以此建立全新的认证机制,改善公共服务领域的管理水平。公益流程中的相关信息如捐赠项目、募集明细、资金流向、受助人反馈等,均可存放于区块链上,在满足项目参与者隐私保护及其他相关法律法规要求的前提下,有条件地进行公开公示,方便公众和社会监督。三、信息安全领域利用区块链可追溯、不可篡改的特性,可以确保数据来源的真实性,同时保证数据的不可伪造性,区块链技术将从根本上改变信息传播路径的安全问题。区块链对于信息安全领域体现在以下三点:一、用户身份认证保护二、数据完整性保护三、有效阻止DDoS攻击区块链的分布式存储架构则会令黑客无所适从,已经有公司着手开发基于区块链的分布式互联网域名系统,绝除当前DNS注册弊病的祸根,使网络系统更加干净透明。四、物联网领域区块链+物联网,可以让物联网上的每个设备独立运行,整个网络产生的信息可以通过区块链的智能合约进行保障。a)安全性传统物联网设备极易遭受攻击,数据易受损失且维护费用高昂。物联网设备典型的信息安全风险问题包括,固件版本过低、缺少安全补丁、存在权限漏洞、设备网络端口过多、未加密的信息传输等。区块链的全网节点验证的共识机制、不对称加密技术及数据分布式存储将大幅降低黑客攻击的风险。b)可信性传统物联网由中心化的云服务器进行管控,因设备的安全性和中心化服务器的不透明性,用户的隐私数据难以得到有效保障。而区块链是一个分布式账簿,各区块既相互联系又有各自独立的工作能力,保证链上信息不会被随意篡改。因此,分布式账本可以为物联网提供信任、所有权记录、透明性和通信支持。c)效益性受限于云服务和维护成本,物联网难以实现大规模商用。传统物联网实现物物通信是经由中心化的云服务器。该模式的弊端是,随着接入设备的增多,服务器面临的负载也更多,需要企业投入大量资金来维持物联网体系的正常运转。而区块链技术可以直接实现点对点交易,省略了中间其他中介机构或人员的劳务支出,可以有效减少第三方服务所产生的费用,实现效益最大化。五、供应链领域供应链由众多参与主体构成,存在大量交互协作,信息被离散地保存在各自的系统中,缺乏透明度。信息的不流畅导致各参与主体难以准确地了解相关事项的实时状况及存在问题,影响供应链的协同效率。当各主体间出现纠纷时,举证和追责耗时耗力。区块链可以使数据在各主体之间公开透明,从而在整个供应链条上形成完整、流畅、不可篡改的信息流。这可以确保各主体及时发现供应链系统运行过程中产生的问题,并有针对性地找到解决方案,进而提升供应链管理的整体效率。发布于 2023-11-13 15:28赞同 1添加评论分享收藏喜欢收起
什么是区块链技术? - IBM Blockchain
什么是区块链技术? - IBM Blockchain
什么是区块链技术?
区块链是一种不可篡改的共享账本,用于记录交易、跟踪资产和建立信任
区块链的优点
区块链成功从这里开始
IBM《区块链傻瓜书》现已发行第 3 版,已向超过 6.8 万名读者介绍了区块链。
内容:
区块链基础
区块链如何运作
区块链的实践应用:用例
由 Linux 基金会主导的 Hyperledger 项目
第一次区块链应用的十个步骤
区块链技术概述
区块链定义:区块链是一个共享的、不可篡改的账本,旨在促进业务网络中的交易记录和资产跟踪流程。 资产可以是有形的(如房屋、汽车、现金、土地),也可以是无形的(如知识产权、专利、版权、品牌)。几乎任何有价值的东西都可以在区块链网络上跟踪和交易,从而降低各方面的风险和成本。
为什么区块链很重要:业务运营依靠信息。信息接收速度越快,内容越准确,越有利于业务运营。区块链是用于传递这些信息的理想之选,因为它可提供即时、共享和完全透明的信息,这些信息存储在不可篡改的账本上,只能由获得许可的网络成员访问。区块链网络可跟踪订单、付款、帐户、生产等信息。由于成员之间共享单一可信视图,因此,您可采取端到端方式查看交易的所有细节,从而增强信心,提高效率并获得更多的新机会。
区块链的关键元素
分布式账本技术
所有网络参与者都有权访问分布式账本及其不可篡改的交易记录。 借助这个共享账本,交易只需记录一次,从而消除了传统业务网络中典型的重复工作。
不可篡改的记录
当交易被记录到共享账本之后,任何参与者都不能更改或篡改相关信息。 如果交易记录中有错误,则必须添加新交易才能撤消错误,这两个交易随后都是可视的。
智能合约
为了加快交易速度,区块链上存储了一系列自动执行的规则,称为 "智能合约" 。 智能合约可以定义企业债券转让的条件,包括有关要支付的旅行保险的条款等等。
区块链如何运作
每个交易发生时,都会被记录为一个数据“区块”
这些交易表明资产的流动情况,资产可以是有形的(如产品),也可以是无形的(如知识产权)。 数据区块可以记录您选择的信息:人、事、时、地、数甚至条件(例如食品运输温度)。
每个区块都与其前后的区块连接
随着资产从一地移至另一地或所有权的变更,这些数据区块形成了数据链。 数据区块可以确认交易的确切时间和顺序,通过将数据区块安全地链接在一起,可以防止任何数据区块被篡改或在两个现有数据区块之间插入其他数据区块。
交易以区块形式组合成不可逆的链:区块链
每添加一个数据区块都会增强对前一个区块的验证,从而也增强对整条区块链的验证。 因此,篡改区块链很容易就会被发现,这也是不可篡改性的关键优势所在。 这不但消除了恶意人员进行篡改的可能性,还建立了您和其他网络成员可以信任的交易账本。
区块链技术的优点
需要改变的方面:运营人员常常在保留重复记录和执行第三方验证等方面浪费精力。 记录保存系统容易受到欺诈和网络攻击的威胁。 有限的透明度会延缓数据验证速度。 随着物联网的到来,交易量呈爆炸式激增。 所有这些因素都会影响开展业务的速度并侵蚀利润,因此我们需要更好的方法。 于是区块链闪亮登场。
更高的信任度
通过使用区块链技术,作为会员制网络中的一员,您可以确信自己收到准确、及时的数据,并且您的机密区块链记录只能与您特别授予访问权限的网络成员共享。
更高的安全性
所有的网络成员都需要就数据准确性达成共识,并且所有经过验证的交易都将永久记录在案,不可篡改。 没有人可以删除交易,即便是系统管理员也不例外。
更高的效率
通过在网络成员之间共享分布式账本,可避免在记录对账方面浪费时间。 为了加快交易速度,区块链上存储了一系列自动执行的规则,称为“智能合约”。
区块链基础知识五分钟简介
1
深入了解区块链技术的基础知识:数据块中如何包含代表任何有价值事物的数据,它们如何在不可篡改的数据链中按时间顺序连接在一起,以及区块链与比特币等加密货币之间有何差异。
2
了解区块链的分散性质如何使其有别于传统的记录保存,探索许可区块链在商业交易中的价值,以及区块链如何使信任和透明度达到新的水平。
3
食品行业只是通过区块链技术实现转型的行业之一。 了解如何在保护网络参与者数据的前提下,追溯食品的种植、收获、运输和加工的时间、地点和方式。
4
区块链之所以能建立信任,是因为它代表了真实的共享记录。每个人都能相信的数据将有助于推动其他新技术的发展,从而能大幅提高效率、透明度和置信度。
区块链网络的类型
可采用多种方式建立区块链网络。 它们可以是公有、私有、许可式区块链网络,或由联盟建立。
公有区块链网络
公有区块链是任何人都可以加入和参与的区块链,如比特币。 缺点可能包括需要大量计算能力,交易的私密性极低或根本没有私密性可言,以及安全性较弱。 而这些都是区块链的企业用例的重要考虑因素。
私有区块链网络
私有区块链网络与公有区块链网络相似,也是分散的点对点网络。 但是,在私有区块链网络中,由一个组织负责管理网络,控制谁获准参与网络,并执行共识协议,维护共享账本。 这有助于显著提高参与者之间的信任和信心,具体取决于用例。 私有区块链可在企业防火墙后运行,甚至可在企业内部托管。
许可式区块链网络
建立私有区块链的企业通常也会建立许可式区块链网络。 需要注意的是,公有区块链网络也可以成为许可式网络。 这种模式对获准参与网络和执行特定交易的人员施加限制。 参与者需要获得邀请或许可才能加入。
联盟区块链
多个组织可以分担维护区块链的责任。 这些预先挑选的组织决定谁可以提交交易或访问数据。 如果所有参与者都必须获得许可才能参与,并且对区块链共担责任,那么对于企业而言,联盟区块链是理想之选。
区块链安全性
区块链网络的风险管理系统
在构建企业区块链应用时,必须制定全面的安全战略,通过使用网络安全框架、保证服务以及最佳实践,缓解攻击和欺诈带来的风险。
了解有关区块链安全性的更多信息
区块链用例和应用
IBM Food Trust 通过从海洋一直到超市和餐馆全程跟踪捕捞的每一批海鲜,帮助 Raw Seafoods 增强整个食品供应链的信任度。
INBLOCK 发行了基于 Hyperledger Fabric 的 Metacoin 加密货币,旨在更迅速、更方便、更安全地开展数字资产交易。
利用区块链技术,实现变革性的医疗成果
IBM Blockchain Platform 帮助生态系统改变确保信任、数据来源和效率的方式,从而改善患者治疗和组织盈利能力。
阅读:实现变革性的医疗成果 (PDF, 188 KB)
了解 Golden State Foods 如何利用区块链的不可篡改性,跟踪供应链中的货物,帮助保障食品质量。
Vertrax 和 Chateau Software 推出了第一个基于 IBM Blockchain Platform 的多云区块链解决方案,旨在帮助防止大宗石油和天然气分销的供应链中断。
Home Depot 采用 IBM Blockchain 技术,获取有关发货和收货的共享可信信息,从而减少供应商争议并加速解决争议。
行业区块链
行业领军企业使用 IBM Blockchain 消除摩擦,建立信任,实现新的价值。 选择细分行业以了解详细信息。
供应链
医疗保健
政府
零售
媒体和广告
石油和天然气
电信
制造
保险
金融服务
旅游和交通运输 (PDF, 340 KB)
区块链常见问题解答
区块链和比特币有何区别?
比特币是一种不受监管的数字货币。 比特币使用区块链技术作为其交易账本。
这段视频说明了两者之间的差异。
IBM Blockchain Platform 与 Hyperledger 有何关系?
IBM Blockchain Platform 由 Hyperledger 技术提供支持。
这种区块链解决方案可以帮助任何开发人员顺利转变为区块链开发人员。
请访问 Hyperledger 网站以了解详细信息。
了解有关 Hyperledger 的更多信息
我可以在自己期望的任何云上进行部署吗?
IBM Blockchain Platform 软件经过优化处理,可以部署在 Red Hat 最先进的企业级 Kubernetes 平台 Red Hat® OpenShift® 之上。
这意味着您可以更灵活地选择在何处部署区块链网络组件,无论是本地、公有云还是混合云架构。
信息图:在自己选择的云环境中进行部署
我需要更多详细信息。 可从哪里获得?
如需更详细地了解区块链网络的运作方式以及使用方法,请阅读《分布式账本简介》(Introduction to Distributed Ledgers)。
学习 IBM Developer 上的区块链教程,了解更多信息
探索 IBM Blockchain Platform 的功能,这是唯一完全集成的企业级区块链平台,旨在帮助您加速多机构业务网络的开发、治理和运营。
立即注册,下载 IBM Blockchain Platform 白皮书 (PDF, 616 KB)
获取有关 Hyperledger Fabric 的详细信息,了解其独到之处、为何对业务网络至关重要以及如何开始使用。
访问 IBM Developer 上的 Hyperledger 页面
这份开发人员快速入门指南解释了如何使用 IBM Blockchain Platform Starter Plan 构建入门级区块链网络并开始编写代码。
查看开发人员快速入门指南
区块链解决方案
IBM Blockchain 解决方案
IBM Blockchain Platform 属于领先的 Hyperledger Fabric 平台。区块链创新者可充分利用这一平台,通过 Red Hat® OpenShift® 在任何计算环境中构建、运营、管理和发展区块链解决方案。
了解有关 IBM Blockchain Platform 的信息
区块链咨询
作为顶级区块链服务提供商,IBM Blockchain Services 拥有丰富的专业知识,可帮助您基于最佳技术构建强大的解决方案。超过 1,600 名区块链专家使用来自 100 多个实时网络的洞察,帮助您构建和发展。
了解有关区块链咨询的信息
所有 IBM Blockchain 解决方案
采用 IBM Blockchain 解决方案是区块链取得成功的最佳捷径。 IBM 融合了各种网络,使您能够轻松让其他成员加入,共同推动食品供应、供应链、贸易融资、金融服务、保险以及媒体和广告等领域的转型。
查看我们快速发展的区块链解决方案
区块链技术资源
通过艺术诠释区块链技术
我们请来五位对区块链技术知之甚少的艺术家,创作有关区块链主要优点的艺术作品。查看他们的作品,然后在我们最新网络研讨会系列 Blockparty 中,从 IBM 客户和业务合作伙伴那里了解更多信息。
区块链技术博客
网络上有关区块链技术的内容并不缺乏。但对于 100 多万的读者来说,IBM Blockchain Pulse 博客是区块链思想领导力和洞察分析最值得信赖的来源之一。
区块链技术播客
戴上耳机,通过聆听区块链创新者的知识来充实自我。了解区块链技术如何帮助个人重新获得对身份的控制权限、消除全球贫困和减少污染等难题。
区块链技术用例
通过了解创新者如何使用区块链技术 IBM Blockchain Platform 变革业务来获得启发。您可以加入现有的区块链网络,也可以与我们合作创建您自己的区块链网络。
客户成功案例
了解我们的客户如何运用 IBM Blockchain 区块链技术,对组织进行革新,从而获得切实可行的业务成果。
区块链技术后续步骤
浏览我们的参考指南,更深入地了解区块链的各个方面,包括运作方式、使用方法以及实施注意事项。
区块链技术主题
区块链技术的优点
智能合约
面向企业的区块链
区块链安全性
社会公益区块链
区块链和物联网
Hyperledger